Gravitational Wave Data Analysis

2021 summer School on Numerical Relativity and Gravitational Waves 16 August ~ 20 August, 2021 Hyung Won Lee(Inje University) with Jeongcho Kim(Inje), Chunglee Kim(Ewha)

Contents

- What is gravitational wave?
- Plane wave solution
- Geometry of detector
- Gravitational wave detections
- How data obtained
- Data Analysis
- Time series data and Nyquist frequency
- Work in frequency domain

Contents

- CBC signal
- Parameter estimation
- Bayesian inference
- Various PE methods
- Questions

Gravitational Waves

What is Gravitational Wave?

Gravitational waves are 'ripples' in space-time caused by some of the most violent and energetic processes in the Universe

2021-08-18

2021 Summer School on Numerical Relativity and Gravitational Waves

Gravitational Waves

- Linearized Einstein Equation
- $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \ |h_{\mu\nu}| \ll 1$
- $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- $\bullet \eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}h_{\mu\nu} + O(h^2) = -\frac{16\pi G}{c^4}T_{\mu\nu}, \ \partial^{\mu}h_{\mu\nu} = 0$
- Wave equation

•
$$\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta}h_{\mu\nu} = \Box h_{\mu\nu} = \left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right)h_{\mu\nu} = 0$$
 h

 $h_{\mu\nu} = \frac{2G}{R_o^4}\ddot{I}_{\mu\nu}$

2021 Summer School on Numerical Relativity and Gravitational Waves

Binary orbit in Newtonian Theory

Orbital motion does not change space-time

Credit: Carl Rodriguez

General Relativity

Mass, Energy ~ curved space-time

아인슈타인의 상대성 이론과 쌍성의 궤도 운동

Change in space-time caused by binary motion

Credit: Carl Rodriguez

Degrees of Freedom

Symmetric 2nd rank tensor 10 degrees of freedom $\Box h_{\alpha\beta} = \frac{8\pi G}{c^4} \tau_{\alpha\beta}$

General coordinate transformation gauge $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$ Lorentz gauge condition $\partial_{\alpha}h^{\alpha\beta} = 0$ (4 conditions) 10 - 4 = 6 degrees of freedom

Gauge field selection freedom Spatial and traceless $\xi^{\mu} = B^{\mu} e^{ik_{\alpha}x^{\alpha}}, k_{\alpha}k^{\alpha} = 0$ (4 condition) 6 - 4 = 2 degrees of freedom

GWs and lines of force

Lines of force for $h_{+}^{\rm TT}$ and $h_{\times}^{\rm TT}$

GW Sources

Main GW sources: Compact Binary Coalescences (CBCs)

$m_1+m_2 \sim m_f + GWs$

Plane Wave Solution

Solution in vacuum

$$\begin{aligned} & \Box \bar{h}_{\mu\nu} = 0, \ \partial^{\mu} \bar{h}_{\mu\nu} = 0 \\ & \cdot \bar{h}_{\mu\nu} = A_{\mu\nu} \cos(k_{\alpha} x^{\alpha} - \phi_{(\mu)(\nu)}), \eta^{\alpha\beta} k_{\alpha} k_{\beta} = 0 \\ & \cdot x^{\alpha} = \{ct, x, y, z\}, \ k^{\alpha} = \left\{\frac{\omega}{c}, k^{x}, k^{y}, k^{z}\right\} \\ & \cdot k_{\alpha} x^{\alpha} = -\omega t + \vec{k} \cdot \vec{x}, \omega = 2\pi f = c \left|\vec{k}\right| \\ & \cdot \bar{h}_{\mu\nu} = A_{\mu\nu} \cos\left(\omega t - \vec{k} \cdot \vec{x} + \phi_{(\mu)(\nu)}\right), \bar{h}_{\mu\nu} k^{\nu} = 0 \end{aligned}$$
 This equations reduce 10 to 6
 $\cdot \xi^{\alpha}(t, \vec{x}) = B^{\alpha} \cos\left(\omega t - \vec{k} \cdot \vec{x} + \phi_{(\alpha)}\right) \\ & \cdot x'^{\mu} = x^{\mu} + \xi^{\mu} \end{aligned}$

Transverse Traceless coordinate

•
$$\bar{h}'_{\mu\nu}U'^{\nu} = 0, \eta^{\mu\nu}\bar{h}'_{\mu\nu} = 0, \bar{h}'_{\mu\nu}k'^{\nu} = 0, \bar{h}'_{\mu\nu} = h'_{\mu\nu}$$
 TT gauge
Trace reversed and original is same in TT gauge
Global Lorentz transformation $x'^{\alpha} = \Lambda^{\alpha}_{\beta}x^{\beta}$ preserve all these properties.
Choose coordinate to be $U^{\mu} = \frac{dx^{\mu}}{dt} = (1,0,0,0)$
Rotate coordinate to be $k^{\mu} = \left(\frac{\omega}{c}, 0, 0, \frac{\omega}{c}\right)$
 $h_{\mu3} = 0$
 $h_{11} + h_{22} = 0$

Transverse Traceless coordinate

$$\begin{split} \bullet \ h_{+} &\equiv h_{11} = -h_{22}, h_{\times} \equiv h_{12} = h_{21} \\ \bullet \ h_{\mu\nu}^{TT}(t,\vec{x}) &= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+}(t,\vec{x}) & h_{\times}(t,\vec{x}) & 0 \\ 0 & h_{\times}(t,\vec{x}) & -h_{+}(t,\vec{x}) & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+}\left(t-\frac{z}{c}\right) & h_{\times}\left(t-\frac{z}{c}\right) & 0 \\ 0 & h_{\times}\left(t-\frac{z}{c}\right) & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \bullet \ h_{+}(t,\vec{x}) = A_{+} \cos\left[\omega\left(t-\frac{z}{c}\right) + \phi_{+}\right] \\ \bullet \ h_{\times}(t,\vec{x}) = A_{\times} \cos\left[\omega\left(t-\frac{z}{c}\right) + \phi_{\times}\right] \\ \bullet \ h_{\mu\nu}^{TT}(t,\vec{x}) = h_{+}(t,\vec{x})e_{\mu\nu}^{+} + h_{\times}(t,\vec{x})e_{\mu\nu}^{\times} \\ \bullet \ R_{x0x0}^{TT} = -R_{y0y0}^{TT} = -R_{x0xz}^{TT} = R_{x2yz}^{TT} = -R_{y2yz}^{TT} = -\frac{1}{2}\partial_{0}^{2}h_{\times} \end{split}$$

Observer's proper frame

- $ds^2 = -c^2 d\hat{t}^2 + \delta_{ij} d\hat{x}^i d\hat{x}^j + \mathcal{O}(\hat{x}^2)$
- $\hat{x}^{\alpha}_{\mathcal{A}}(\hat{t}) = (c\hat{t}, 0, 0, 0)$
- $\hat{x}^{\alpha}_{\mathcal{B}}(\hat{t}) = \left(c\hat{t}, \hat{x}^1(\hat{t}), \hat{x}^2(\hat{t}), \hat{x}^3(\hat{t})\right)$
- $\hat{\xi}^{\alpha}(\hat{t}) \equiv \hat{x}^{\alpha}_{\mathcal{B}}(\hat{t}) \hat{x}^{\alpha}_{\mathcal{A}}(\hat{t}) = \left(0, \hat{x}^{1}(\hat{t}), \hat{x}^{2}(\hat{t}), \hat{x}^{3}(\hat{t})\right)$
- $\cdot \frac{D^2 \hat{\xi}^{\alpha}}{d\hat{t}^2} = -c^2 \hat{R}^{\alpha}_{\ \beta\gamma\delta} \hat{u}^{\beta} \hat{\xi}^{\gamma} \hat{u}^{\delta}, \hat{u}^{\alpha} = \frac{d\hat{x}^{\alpha}}{cd\hat{t}} = (1,0,0,0)$ $\cdot \frac{d^2 \hat{x}^i}{d\hat{t}^2} = -c^2 \hat{R}^i_{\ 0j\delta} \hat{x}^j = -c^2 \hat{R}_{i0j0} \hat{x}^j + \mathcal{O}(\hat{x}^3)$
- $\hat{R}_{i0j0} = \hat{R}_{i0j0}^{TT} + \mathcal{O}(h^2)$

Observer's proper frame

$$\begin{aligned} & \cdot \frac{d^{2}\hat{x}^{i}}{d\hat{t}^{2}} = \frac{1}{2} \frac{\partial^{2}h_{ij}^{TT}}{\partial\hat{t}^{2}} \hat{x}^{j}, \hat{x}^{i}(\hat{t}) = \hat{x}_{0}^{i}, \frac{d\hat{x}^{i}}{d\hat{t}} = 0 \\ & \cdot \hat{x}^{i}(\hat{t}) = \hat{x}_{0}^{i} + \mathcal{O}(h) \\ & \cdot \frac{d^{2}\hat{x}^{i}}{d\hat{t}^{2}} = \frac{1}{2} \frac{\partial^{2}h_{ij}^{TT}}{\partial\hat{t}^{2}} \hat{x}_{0}^{i} \\ & \cdot \hat{x}^{i}(\hat{t}) = \left(\delta_{ij} + \frac{1}{2}h_{ij}^{TT}(\hat{t})\right) \hat{x}_{0}^{i} \\ & \cdot \hat{x}^{i}(\hat{t}) = \hat{x}_{0} + \frac{1}{2} \left(h_{+}(\hat{t})\hat{x}_{0} + h_{\times}(\hat{t})\hat{y}_{0}\right), \quad (1.83a) \\ & \hat{y}(\hat{t}) = \hat{y}_{0} + \frac{1}{2} \left(h_{\times}(\hat{t})\hat{x}_{0} - h_{+}(\hat{t})\hat{y}_{0}\right), \quad (1.83b) \\ & \hat{z}(\hat{t}) = \hat{z}_{0}. \end{aligned}$$

2021-08-18

2021 Summer School on Numerical Relativity and Gravitational Waves

Theoretical Waveforms

- Known only for the very restricted cases, CBC inspiral
- Newtonian Chirp signal from binary system

•
$$h_{+}(t) = -\frac{GM_{c}}{c^{2}r} \frac{1+\cos^{2}\iota}{2} \left(\frac{c^{3}(t_{c}-t)}{5GM_{c}}\right)^{-\frac{1}{4}} \cos\left[2\varphi_{c} - 2\left(\frac{c^{3}(t_{c}-t)}{5GM_{c}}\right)^{\frac{5}{8}}\right]$$

• $h_{\times}(t) = -\frac{GM_{c}}{c^{2}r} \cos\iota\left(\frac{c^{3}(t_{c}-t)}{5GM_{c}}\right)^{-\frac{1}{4}} \sin\left[2\varphi_{c} - 2\left(\frac{c^{3}(t_{c}-t)}{5GM_{c}}\right)^{\frac{5}{8}}\right]$

$$\begin{aligned} \text{Post-Newtonian waveform} \\ \tilde{h}(f) &= \frac{M\nu}{D_L} \sum_{n=0}^{5} \sum_{k=1}^{7} V_k^{2+n} \left(k \frac{dF}{dt} \right)^{-1/2} \\ &\times \left(\alpha_k^{(n)} e^{i(2\pi f t(F) - k\Psi(F) - \pi/4)} + \beta_k^{(n)} e^{i(2\pi f t(F) - (k\Psi(F) - \pi/2) - \pi/4)} \right) , \\ &= \frac{M\nu}{D_L} \sum_{n=0}^{5} \sum_{k=1}^{7} V_k^{n-\frac{7}{2}} \sqrt{\frac{5\pi}{k \, 48\nu}} M \left(1 + \mathcal{S}_2 V_k^2 + \mathcal{S}_3 V_k^3 + \mathcal{S}_4 V_k^4 + \mathcal{S}_5 V_k^5 \right) \\ &\times (\alpha_k^{(n)} + e^{i\pi/2} \beta_k^{(n)}) e^{i(k\Psi_{\text{SPA}}(f/k) - \pi/4)} , \\ &= \frac{M^2}{D_L} \sqrt{\frac{5\pi\nu}{48}} \sum_{n=0}^{5} \sum_{k=1}^{7} V_k^{n-\frac{7}{2}} \mathcal{C}_k^{(n)} e^{i(k\Psi_{\text{SPA}}(f/k) - \pi/4)} . \end{aligned}$$
(4.72)

 $\tilde{h}(f) = \mathcal{A}f^{-7/6}e^{i\psi(f)},$

,

ummer School on Numerical Relativity and Gravitational Waves

Geometry of Detector

Wave propagation coordinate

 $ds^{2} = -c^{2}dt^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j}$ $\left(-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}} + \nabla^{2}\right)h_{ij} = 0, \ h_{ij}\left(t - \frac{\vec{k}\cdot\vec{r}}{c}\right)$ $\vec{k} = (0,0,1), \ h_{ij} = h_{+}e_{+ij} + h_{\times}e_{\times ij}$ $e_{+ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ e_{\times ij} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ e_{+ij} = \ell_{i}\ell_{j} - m_{i}m_{j}, \ e_{\times ij} = \ell_{i}\ell_{j} + m_{i}m_{j}$ $\vec{\ell}, \vec{m}, \vec{k} : \text{ source's natural polarization}$

Direction of source

- $\vec{\ell} = \hat{\imath} \cos \psi + \hat{\jmath} \sin \psi$
- $\vec{m} = -\hat{\imath}\sin\psi + \hat{\jmath}\cos\psi$
- $\varepsilon_{+ij} = \hat{\imath}_i \hat{\imath}_j \hat{\jmath}_i \hat{\jmath}_j$, $\varepsilon_{\times ij} = \hat{\imath}_i \hat{\imath}_j + \hat{\jmath}_i \hat{\jmath}_j$
- $e_{+ij} = \varepsilon_{+ij} \cos 2\psi + \varepsilon_{\times ij} \sin 2\psi$

•
$$e_{\times ij} = -\varepsilon_{+ij} \sin 2\psi + \varepsilon_{\times ij} \cos 2\psi$$

Interaction with a Detector

Antenna response function

•
$$h = h_{ab}d^{ab} = (h_+e_{+ab} + h_{\times}e_{\times ab})d^{ab} = h_+F_+ + h_{\times}F_{\times}$$

• $F_+ = d^{ab}e_{+ab} = d^{ab}\varepsilon_{+ab}\cos 2\psi + d^{ab}\varepsilon_{\times ab}\sin 2\psi$

• $F_{\times} = d^{ab}e_{+ab} = -d^{ab}\varepsilon_{+ab}\sin 2\psi + d^{ab}\varepsilon_{\times ab}\cos 2\psi$

Inclination angle

Gravitational Waves Detections

Brief history of GW Observations

1915 General Relativity

1960s Webber's bar detector

1970s pulsar-neutron star discovery

O1: 2015/09/12~2016/01/19 3 BBH direct detection(GW150914, GW151012, GW151226)

O2: 2016/11/30~2017/08/25 7 BBH(GW170104, GW170608, GW170729, GW170809, GW170814, GW170818, GW170823) and 1 BNS(GW170817)

O3a : 2019/04/01~2019/09/30 O3b : 2019/11/01~2020/03/27(COVID-19 shutdown)

Around 40 events

List of gravitational wave observations - Wikipedia

Masses in the Stellar Graveyard

in Solar Masses

Image Masses in the Stellar Graveyard: GWTC-2 + NSBHs (GW200105/GW200115) LIGO Lab Caltech

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern GWTC-2

LVT151012 ~~~~~

GW151226

GW170104

GW170817

time observable (seconds)

LIGO/University of Oregon/Ben Farr

2

GW signal

<u>GWOSC (gw-openscience.org)</u>

0

How Data Obtained

Detector operation

- Sampling rate
 - 16384Hz:LIGO
 - 20kHz:Virgo
 - 16384Hz:KAGRA

• Valid range

- 10Hz~5kHz : LIGO
- 10Hz~8kHz : Virgo
- 10Hz~5kHz : KAGRA

Data Analysis

Data Analysis

- GW signal is very weak $\sim 10^{-22} 10^{-24}$
- Matched filter for known waveform
- Detector characterization

Data Analysis

Detector Characterization

- Noise identification
- Detector performance

Search

- Matched filter
- Masses, Distance, Sky location

Parameter Estimation

- Better accuracy
- Distribution

Data Analysis Pipeline

Gravitational Wave Open Science Center gw-openscience.org

Amplitude Spectral Density (ASD)

The ASD can be obtained by taking the square root of the PSD. This is done to give units that can be more easily compared with the time domain data or FFT. More information about the LIGO ASD can be seen on the Instrumental Lines page.

G2101351

Data Downloads

• Online courses

• Tutorials

Documentation

Show the code

#
Plot the ASD
#
<pre>Pxx, freqs = mlab.psd(strain_seg, Fs=fs, NFFT=2*fs)</pre>
<pre>plt.loglog(freqs, np.sqrt(Pxx))</pre>
plt.axis([10, 2000, 1e-23, 1e-18])
plt.grid('on')
plt.xlabel('Freq (Hz)')
<pre>plt.ylabel('Strain / Hz\$^{1/2}\$')</pre>

Finding signals in noisy data

Matched Filter

•<u>Correlate</u> data with expected signal (Here, plotting absolute value) G1400343

2021 Summer School on Numerical Relativity and Gravitational Waves

Time Series Data Nyquist Frequency

Odw4, GW190412

immer School on Numerical Relativity and Gravitational Waves

LIGO Data

- Discretely sampled time-series data
- Sampling rate (fs)
- h(t) calibrated strain
 - ALSO: hundreds of "auxiliary" channels
- Recorded at 16384 Hz sample rate
- ~300 MB per hour
- Stored in .gwf "frame" files
 - Also HDF5(Hierarchical Data Format version 5)

Discrete Time Samples

Discrete Time Samples

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

Discrete Time Samples

Nyquist Frequency

- Nyquist Frequency = $f_s / 2$
 - Discretely sampled data with sampling rate fs can represent a continuous signal which only has frequency content below the Nyquist frequency
- Data can only contain frequency content below the *Nyquist frequency*
- Higher frequency signals will be lost or "aliased" to lower frequencies

Noise is random, but its properties can be characterized

2021 Summer School on Numerical Relativity and Gravitational Waves

Possible properties of noise

Stationary : statistical properties are independent of time

Ergodic process: time averages are equivalent to ensemble averages

Gaussian : A random variable follows Gaussian distribution

For a single random variable,
$$p(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \exp\left[-\frac{1}{2}\frac{(x-\mu_x)^2}{\sigma_x^2}\right]$$

More generally, a *set* of random variables (e.g. a time series) is Gaussian if the joint probability distribution is governed by a covariance matrix

$$C_{xij} := \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

such that

$$p(x_1, x_2, \dots, x_N) = \frac{1}{(2\pi)^{N/2} \sqrt{\det C_x}} \exp\left[-\frac{1}{2} \sum_{i,j=0}^{N-1} C_{xij}^{-1} (x_i - \mu_{xi}) (x_j - \mu_{xj})\right]$$

White : Signal power is uniformly distributed over frequency

 \Rightarrow Data samples are uncorrelated

Work in Frequency Domain

How would you describe this function?

Fourier Transform

Key Concept

Any function can be represented as a sum of sine waves.

$$h(t) = A_1 \sin(\omega_1 t + \phi_1) + A_2 \sin(\omega_2 t + \phi_2) \dots$$

In the "frequency domain", we are plotting the amplitudes (or phases) of each of these sine waves.

$$|H(\omega_n)| = A_n$$

Fourier Transform is used to represent data in the frequency domain

Fourier transform

$$\widetilde{x}(f) = \int_{-\infty}^{\infty} dt \, x(t) e^{-i2\pi ft}$$

$$\Rightarrow \qquad x(t) = \int_{-\infty}^{\infty} df \ \widetilde{x}(f) e^{i2\pi ft}$$

 $|\widetilde{x}(f)|^2$ can be interpreted as energy spectral density

Efficient way to calculate complete discrete Fourier Transform: Fast Fourier Transform (FFT)

Power Spectral Density

Parseval's theorem:

$$\int_{-\infty}^{\infty} dt \, |x(t)|^2 = \int_{-\infty}^{\infty} df \, |\widetilde{x}(f)|^2$$

 \Rightarrow Total energy in the data can be calculated in either time domain or frequency domain

 $|\widetilde{x}(f)|^2$ can be interpreted as energy spectral density

When noise (or signal) has infinite extent in time domain, can still define the power spectral density (PSD)

$$\lim_{T \to \infty} \frac{1}{T} \left| \tilde{x}_T(f) \right|^2 \qquad \langle n(f) n^*(f') \rangle = \delta(f - f') S_n(f)$$

Watch out for one-sided vs. two-sided PSDs

Slide from P. Shawhan

Estimating the PSD

Simplest approach: FFT the data, calculate square of magnitude of each frequency component – this is a periodogram

For stationary noise, one can show that the frequency components are statistically independent

This estimate is unbiased (has the correct mean), but has a large variance – so average several periodograms

Alternately, smooth periodogram; give up frequency resolution either way

Generally apply a "window" to the data to avoid spectral leakage

Leakage arises from the assumption that the data is periodic!

Tapered window forces data to go to zero at ends of time interval

Welch's method of estimating a PSD averages periodograms calculated from windowed data

PSD Estimation

- Welch average: XLALREAL8AverageSpectrumWelch()
- Median selection: XLALREAL8AverageSpectrumMedian()

Data Analysis

Window and power leakage win Spectral leakage caused by "windowing"

Window function - Wikipedia

69

× 10⁻¹⁹

- Hanford Data

6

 $i \cup$

²⁰²¹ Summer school on realistical relativity and Gravitational wave

2021 SUMMER SCHOOL ON NUMERICAL RELATIVITY AND GLAVITATIONAL WAVES

h(t) graph

KAGALI h(t) data Window function : Tukey with 5% padding Strain data : L-L1_LOSC_16_V1-1126256640-4096.gwf Channel : L1:GWOSC-16KHZ_R1_STRAIN Trigger time : 1126259462 Segment length : 16s

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

2021 Summer School on Numerical Relativity and Gravitational Waves

2021 Summer School on Numerical Relativity and Gravitational Waves

LALInferenceReadData.c

- LALInferenceReadData()
 - Read data file or generate fake data
 - Read PSD data file or generate from strain data
 - Resample as required sample rate
 - Windowing the time data
 - Generate frequency domain data using FFT
 - Generate whiten data in frequency and time

$$d(t) \xrightarrow{\text{FFT}} \tilde{d}(f) \xrightarrow{\text{Whiten}} \tilde{d}_w(f) = \frac{\tilde{d}(f)}{S_n^{1/2}(f)} \xrightarrow{\text{iFFT}} d_w(t)$$

CBC Signal

CBC: Compact Binary Coalescence

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

CBC Waveform

Merger and ringdown

Spectrogram (Q-transform)

How long is the waveform?

- Black holes orbit more millions (or billions) of years.
- But, LIGO only "sees" events for a few seconds or less. Why?

2021 Summer School on Numerical Relativity and Gravitational Waves

2021 Summer School on Numerical Relativity and Gravitational Waves

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

What frequency is LIGO most sensitive?

What frequency is LIGO most sensitive?

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

You can see resonant frequencies!

2021 Summer School on Numerical Relativity and Gravitational Waves

What happens at low frequencies?

Time-frequency analysis and stationary

- Long-term
- Short-term: glitches
- AC lines

Stationarity test

• Continuous Wavelet transform(scalogram)

GPS 1165067917

בטבד שנווווופו שנווטטו טוד ואעווופווכמו הפומנואונץ מווע שדמאוגמנוטוומו Waves

Wilson-Hilferty transfrom

 Transform Chi-square of many degree of freedom to standard one

2021-08-18

2021 Summer School on Numerical Relativity and Gravitational Waves

Parameter Estimation

Bayesian Inference

Bayesian Method

• Question: "What is the distribution of parameters for the given observed data?"

Experiment on Laboratory

• Question: "What is the distribution of parameters from data taken with many identical experiments?"

2021 Summer School on Numerical Relativity and Gravitational Waves

Classical vs. Bayesian Statistical Inference

Classical Inference

2021-08-18

2021 Summer School on Numerical Relativity and Gravitational Waves

102

Classical vs. Bayesian Statistical Inference

2021 Summer School on Numerical Relativity and Gravitational Waves

The Likelihood Function

• Data Likelihood represents a quantitative description of our measuring process.

The Likelihood Function The probability of the data given the model

Likelihood is a function of x for given model

Likelihood is a function of model parameters for given data

Essence of the Bayesian Idea

• Bayes' rule(theorem)

$$p(M|D) = \frac{p(D|M) p(M)}{p(D)} \qquad p(M,D) = p(M|D)p(D) = p(D|M)p(M)$$

• Improved belief is the product of initial belief and the probability that initial belief generate the observed data

$$p(M, \boldsymbol{\theta} | D, I) = \frac{p(D|M, \boldsymbol{\theta}, I) p(M, \boldsymbol{\theta} | I)}{p(D|I)}$$
$$p(M, \boldsymbol{\theta} | I) = p(\boldsymbol{\theta} | M, I) p(M|I)$$

How related Prior, Likelihood, Posterior

Summary of the Bayesian statistical inference

- 1. Formulation of Likelihood p(D|M,I)
- 2. The choice of prior $p(\vec{\theta}|M,I)$
- 3. Determination of posterior pdf p(M|D,I)
- 4. Maximum posteriori estimation(MAP) posterior mean $\bar{\theta} = \int \theta p(\theta|D) d\theta$ $p(\theta|D) = \int p(\vec{\theta}|D) d\vec{\theta'}$, marginalization over all other parameters
- 5. Quantification of uncertainty in parameters
- 6. Hypothesis test about the model or parameters
Comparison of Classical and Bayesian

Classical	Bayesian	Note
p(D M)	p(D M)	same
Find maximum $p(D M)$ value	Choose prior $p(M)$	
	Determine posterior $p(M D)$	
Determine confidence level	Marginalize to determine value	
	Determine confidence level	
Hypothesis test	Hypothesis test	same but different way

Bayesian Priors

- How do we choose prior $p(\vec{\theta}|M,I)$
 - Knowledge extracted from prior measurements
 - Different measurement with a new data
- Informative priors : information based on the other measurement

Parameter Estimation

- How probable the parameters for given observation
- Bayesian Inference[PRD.91.042003]
 - $\wp(\theta|x) = \frac{\wp(\theta,x)}{\wp(x)} = \frac{\wp(x|\theta)\wp(\theta)}{\int \wp(x|\theta)\wp(\theta)d\theta}$
 - $\mathcal{D}(\theta, x) = \mathcal{D}(x|\theta)\mathcal{D}(\theta) = \mathcal{D}(\theta|x)\mathcal{D}(x)$
 - θ : unobservable model parameters
 - x : observable data
 - $\mathcal{P}(\theta, x)$: Joint probability observing data x with model parameter θ
 - $\mathcal{P}(x|\theta) \propto Likelihood function$, probability detecting signal x with θ
- Metropolis-Hasting Algorithm, 10⁶~10⁷ samples
- Extract some independent samples

Parameter Estimation(MCMC)

- Determine posterior $\wp(\theta|x)$ with some methods
- Need to know priors for a given parameter set $\boldsymbol{\theta}$
- $\wp(\theta)$: priors for a given θ
- All physical priors are assumed to be 1(a priori we don't know)
- Distance prior
- Mass prior

Distance Prior

- Sources are uniformly distributed over space
- Sample position should be generated uniformly over space

1.
$$dV = r^2 \sin \theta \, dr d\theta d\phi = -r^2 dr d\mu d\phi$$
, $\mu = \cos \theta$

• Generate $r \sim [r_{min}, r_{max}], \mu \sim [-1, 1], \phi \sim [0, 2\pi]$

•
$$\wp(r) = r^2$$

2.
$$dV = -r^2 dr d\mu d\phi = -r^3 d \ln r d\mu d\phi$$
, $\mu = \cos \theta$

• Generate $\ln r \sim [\ln r_{min}, \ln r_{max}], \mu \sim [-1,1], \phi \sim [0, 2\pi]$

•
$$\wp(r) = r^3$$

Mass Prior

- Sources are uniformly distributed over m_1, m_2
- Sample masses should be generated uniformly over mass ranges

1.
$$dm_1 dm_2 = m_c (1+q)^{2/5} q^{-6/5} dm_c dq$$

• Generate $m_c \sim [m_c^{min}, m_c^{max}], q \sim [0,1]$
• $\wp(m_c, q) = \frac{m_1^2}{m_c} = m_c (1+q)^{2/5} q^{-6/5}$
2. $dm_1 dm_2 = \frac{(m_1+m_2)^2}{(m_1-m_2)\eta^{-3/5}} dm_c d\eta = \frac{m_c (1+\sqrt{1-4\eta})}{1-4\eta+\sqrt{1-4\eta}} dm_c d\eta$
• Generate $m_c \sim [m_c^{min}, m_c^{max}], \eta \sim [0,0.25]$
• $\wp(m_c, \eta) = \frac{m_c (1+\sqrt{1-4\eta})}{1-4\eta+\sqrt{1-4\eta}}$ Singular at $\eta = 0.25$ or $m_1 = m_2$

Likelihood Calculation

Likelihood

$$\log \mathcal{L} = -\frac{1}{2} \langle d - h | d - h \rangle = -\frac{1}{2} \langle d | d \rangle + \langle d | h \rangle - \frac{1}{2} \langle h | h \rangle$$

- Gaussian noise assumption
- $\mathcal{D}(x|\theta) = \mathcal{L}(x|\theta)$

Parallel Tempering

- Use few chains with different temperature
- Use likelihood $\mathcal{L}(s|\theta)^{\frac{1}{T}}, T > 1$
- $T_{max} = \frac{(Network SNR)^2}{n_{par}}$
- Improve convergence and mixing
- The higher temperature, the smoother distribution

Inner Product

•
$$\langle a|b\rangle \equiv 4\Re \int_0^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S(f)} df$$

• $\langle a|b\rangle = 2\Re \int_{-\infty}^\infty \frac{\tilde{a}(f)\tilde{b}^*(f)}{S(|f|)} df = \int_{-\infty}^\infty \frac{\tilde{a}(f)\tilde{b}^*(f) + \tilde{a}^*(f)\tilde{b}(f)}{S(|f|)} df$
• $p_x[x(t)] \propto e^{-\langle X|X \rangle/2}$

• We can consider each frequency bin distributed as

•
$$p_{\chi}[\tilde{\chi}(f)] = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{4\Delta f}{S_{\chi}(f)}} e^{-\frac{1|\tilde{\chi}(f)|^2 \Delta f}{2 S_{\chi}(f)/4}}$$

$$\Delta f = \frac{1}{T}$$

$$p_x[x(t)] \propto \exp\left\{-\frac{1}{2}4\int_0^\infty \frac{|\tilde{x}(f)|^2}{S_x}df\right\}$$

Likelihood(definition)

- $\mathcal{P}(d|\theta)$: probability detecting signal d with θ
- Probability of the signal d contains template $h(\theta)$
 - If d contains template $h(\theta)$, then d h is purely noise

•
$$\mathcal{P}(d-h|\theta) = \mathcal{P}(n|\theta)$$

•
$$p_d[\tilde{d}(f_j) - \tilde{h}(f_j)] = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{4\Delta f}{S_n(f_j)}} e^{-\frac{1}{2} \left| \tilde{d}(f_j) - \tilde{h}(f_j) \right|^2 \Delta f} S_n(f_j)/4}$$

• $\wp(d|\theta) = \prod_{j=0}^{N-1} \frac{1}{\sqrt{2\pi}} \sqrt{\frac{4\Delta f}{S_n(f_j)}} e^{-\frac{1}{2} \left| \tilde{d}(f_j) - \tilde{h}(f_j) \right|^2 \Delta f} S_n(f_j)/4} \propto e^{-\langle d - h|d - h \rangle/2}$

Likelihood(properly normalized)

•
$$\mathscr{D}(d|\theta) = \prod_{j=0}^{N-1} \frac{1}{\sqrt{2\pi}} \sqrt{\frac{4\Delta f}{S_n(f_j)}} e^{-\frac{1}{2} \left| \frac{\tilde{d}(f_j) - \tilde{h}(f_j)}{S_n(f_j)/4} \right|^2 \Delta f}}{S_n(f_j)/4}$$

• $\mathscr{D}(d|\theta) = \left(\prod_{j=0}^{N-1} \frac{1}{\sqrt{2\pi}} \sqrt{\frac{4\Delta f}{S_n(f_j)}} \right) e^{-\frac{1}{2} \sum_{j=0}^{N-1} \left| \frac{\tilde{d}(f_j) - \tilde{h}(f_j)}{S_n(f_j)/4} \right|^2 \Delta f}}{S_n(f_j)/4}$
• $\ln \mathscr{D}(d|\theta) = -\frac{1}{2} \sum_{j=0}^{N-1} \frac{|\tilde{d}(f_j) - \tilde{h}(f_j)|^2 \Delta f}{S_n(f_j)/4} - \frac{1}{2} \sum_{j=0}^{N-1} \ln \frac{2\pi S_n(f_j)}{4\Delta f}}{S_n(f_j)}$
• $\ln \mathscr{D}(d|\theta) = \sum_{j=0}^{N-1} \left[-\frac{2|\tilde{d}(f_j) - \tilde{h}(f_j)|^2 \Delta f}{S_n(f_j)} - \frac{1}{2} \ln \frac{\pi S_n(f_j)}{2\Delta f} \right]$

Likelihood Calculation (used)

- Likelihood $\log \mathcal{L} = -\frac{1}{2} \langle d - h | d - h \rangle = -\frac{1}{2} \langle d | d \rangle + \langle d | h \rangle - \frac{1}{2} \langle h | h \rangle$
- Gaussian noise assumption
- • $\wp(d|\theta) = \mathcal{L}(d|\theta)$

$$\langle d-h|d-h\rangle \ = \ 4 \int_0^\infty \frac{(d-h)^*(d-h)}{S_n(f)} df \simeq 4 \int_{f_{\rm Low}}^{f_{\rm High}} \frac{(d-h)^*(d-h)}{S_n(f)} df$$

Overlap

PRD88, 123039(2013)

•
$$\mathcal{O}(h_1, h_2) = \frac{\langle h_1 | h_2 \rangle}{\sqrt{\langle h_1 | h_1 \rangle \langle h_2 | h_2 \rangle}}$$

• $SNR = \sqrt{\langle h | h \rangle}$

Markov Chain Monte Carlo

Markov Chain Monte Carlo

Markov Process

- Definition
 - Number of state at any time is finite
 - Next sate depends only on the current state
 - Any state could be arrived from any state
 - System does not have deterministic cycle
 - Transition kernel $P(X_t \rightarrow X_{t+1})$ constant
- Ergodicity
 - Any Markov Process converge to a unique statistical equilibrium from any state

Detailed Balance

- At statistical equilibrium, probability of state should not change
 - $\pi(X_t) P(X_t \to X_{t+1}) = \pi(X_{t+1}) P(X_{t+1} \to X_t)$
 - $\frac{P(X_t \to X_{t+1})}{P(X_{t+1} \to X_t)} = \frac{\pi(X_{t+1})}{\pi(X_t)}$
- Practical implementation
 - Proposal : $q(X_t \rightarrow X_{t+1})$
 - Acceptance : $\alpha(X_t \rightarrow X_{t+1})$
 - $P(X_t \rightarrow X_{t+1}) = q(X_t \rightarrow X_{t+1})\alpha(X_t \rightarrow X_{t+1})$

Detailed Balance

• Detailed balance condition acquired if

- $\frac{P(X_t \to X_{t+1})}{P(X_{t+1} \to X_t)} = \frac{q(X_t \to X_{t+1})\alpha(X_t \to X_{t+1})}{q(X_{t+1} \to X_t)\alpha(X_{t+1} \to X_t)} = \frac{\pi(X_{t+1})}{\pi(X_t)}$ • $\frac{\alpha(X_t \to X_{t+1})}{\alpha(X_{t+1} \to X_t)} = \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}$
- Choose next state with probability

•
$$\alpha(X_t \to X_{t+1}) = \min\left(1, \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}\right)$$

Detailed Balance Proof

•
$$\pi(X_{t+1})q(X_{t+1} \to X_t) > \pi(X_t)q(X_t \to X_{t+1})$$
 case
• $\alpha(X_t \to X_{t+1}) = \min\left(1, \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}\right) = 1$
• $\alpha(X_{t+1} \to X_t) = \frac{\pi(X_t)q(X_t \to X_{t+1})}{\pi(X_{t+1})q(X_{t+1} \to X_t)}$
• $\frac{\alpha(X_t \to X_{t+1})}{\alpha(X_{t+1} \to X_t)} = \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}$

Detailed Balance Proof

•
$$\pi(X_{t+1})q(X_{t+1} \to X_t) < \pi(X_t)q(X_t \to X_{t+1})$$
 case
• $\alpha(X_t \to X_{t+1}) = \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}$
• $\alpha(X_{t+1} \to X_t) = \min\left(1, \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}\right) = 1$
• $\frac{\alpha(X_t \to X_{t+1})}{\alpha(X_{t+1} \to X_t)} = \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}$

(68) (ML 18.6) Detailed balance (a.k.a. Reversibility) - YouTube

Metropolis Algorithm

•
$$\alpha(X_t \to X_{t+1}) = \min\left(1, \frac{\pi(X_{t+1})}{\pi(X_t)}\right)$$
: acceptance rate

- Metropolis Algorithm is for the case of $q(X_t \rightarrow X_{t+1}) = q(X_{t+1} \rightarrow X_t)$
- $q(X_t \rightarrow X_{t+1})$ Gaussian distribution centered at X_t

Metropolis-Hasting Algorithm

•
$$\alpha(X_t \to X_{t+1}) = \min\left(1, \frac{\pi(X_{t+1})q(X_{t+1} \to X_t)}{\pi(X_t)q(X_t \to X_{t+1})}\right)$$
: acceptance rate

• One can choose arbitrary appropriate $q(X_t \rightarrow X_{t+1})$ for the target problem

MCMCs

Table 1 An overview of	MCMC-based and non-MCMC-based sampling techniques
Approach	Short description
MCMC-based methods	
Metropolis–Hastings	An algorithm used for obtaining random samples from a probability distribution. Uses a general proposal distribution, with an associated accept/reject step for the proposed parameter value(s) ^{85,86}
Reversible jump MCMC	An extension of the Metropolis–Hastings algorithm. Permits simulation of trans-dimensional moves within parameter space ^{35,225}
Hamiltonian Monte Carlo	A Metropolis–Hastings algorithm based on Hamiltonian dynamics ⁸⁷ . This algorithm is useful if direct sampling is difficult, if the sample size is small or when autocorrelation is high. The algorithm avoids the random walk of Metropolis–Hastings and sensitivity by taking a series of steps informed by first-order gradient information. The No-U-Turn Sampler ²²⁶ is an extension and is often faster because it often avoids the need for tuning the model
Gibbs sampler	A Metropolis–Hastings algorithm where the proposal distribution is the corresponding posterior conditional distribution, with an associated acceptance probability of 1 (REF. ⁸⁴)
Particle MCMC	A combined sequential Monte Carlo algorithm and MCMC used when the likelihood is analytically intractable $^{\rm 177}$
Evolutionary Monte Carlo	An MCMC algorithm that incorporates features of genetic algorithms and simulated annealing ²²⁷ . It allows the Markov chain to effectively and efficiently explore the parameter space and avoid getting trapped at local modes of the posterior distribution. It is particularly useful when the target distribution function is high-dimensional or multimodal
Non-MCMC-based metho	ods
Sequential Monte Carlo	An algorithm based on multiple importance sampling steps for each observed data point. Often used for online or real-time processing of data arrivals ²²⁸
Approximate Bayesian computation	An approximate approach, typically used when the likelihood function is analytically intractable or very computationally expensive ²²⁹
Integrated nested Laplace approximations	An approximate approach developed for the large class of latent Gaussian models, which includes generalized additive spline models, Gaussian Markov processes and random fields ²³⁰
Variational Bayes 2021 Summer	Variational inference describes a technique to approximate posterior distributions via simpler approximating distributions. The popular mean-field approximation assigns an approximating variational distribution to each parameter independently. Gradient descent is then used to optimize the variational parameters to minimize a loss function known as Stillewidencellowerboalneellativity and Gravitational Waves

MCMC, Markov chain Monte Carlo.

Assumptions on PE Likelihoods

[Creighton Chap.7, PRD.91.042003, PRD.85.122006]

- Noise is stationary and Gaussian
- No correlation between time bins
- No correlation between frequency bins
- Residual signal should be noise only for matched case

Posterior samples can be downloaded from gw-openscience.org

GW190521

Documentation
Version: v3
All Versions: v1 v2 v3
GPS: 1242442967.4
UTC Time: 2019-05-21 03:02
Release: GWTC-2
GraceDB: S190521g
GCN: Notices • Circulars
Timeline: Query for segments
DOI: https://doi.org/10.7935/99gf-ax93

- THE R. P. LEW	N. al	111	1
Paramata P		No. of the	
32sec • 16KHz:	GWF	HDF	TXT
32sec • 4KHz:	GWF	HDF	тхт
4096sec • 16KHz:	GWF	HDF	TXT
	100400	SIDE	TYT

GWTC-2 PE for GW190521 (2nd release) Date added: March 9, 2021 show / hide parameters chi_eff 0.03 .0.39 chirp_mass (M_sun) 114.8 -17.6 chirp_mass_source (M_sun) 69.2 .10.6 +36.8 final_mass_source (M_sun) 156.3 .22.4 +2190 luminosity_distance (Mpc) 3920 -1950 mass_1_source (M_sun) 95.3 .18.9 mass_2_source (M_sun) 69.0 .23.1 redshift 0.64 -0.28 +39.2 total_mass_source (M_sun) 163.9 -23.5 Source File Posterior Samples DCC Entry Skymap Default PE

Resources

https://www.gw-openscience.org/software/

Data+ Software+ Online Tools+ About GWOSC+

Software for Gravitational Wave Data

Many of these packages can be installed through LSCSoft Conda. See installation suggestions on the software setup page.

Bayesian Parametric Population Models

This package provides techniques for inferring the merger rate density for compact binary sources

Source Code

BayesWave

BayesWave is a Bayesian algorithm designed to robustly distinguish gravitational wave signals from noise and instrumental glitches without relying on any prior assumptions of waveform morphology.

Homepage & Source code

Bilby

The aim of bilby is to provide user friendly interface to perform parameter estimation. It is primarily designed and built for inference of compact binary coalescence events in interferometric data, but it can also be used for more general problems.

- Documentation
- Source Code
- Python package in PyPI

Software packages for Bayesian inference applied to compact binary coalescences

- LALInference https://git.ligo.org/lscsoft/lalsuite
- Bilby https://git.ligo.org/lscsoft/bilby
- Bayesian Parametric Population Models https://git.ligo.org/daniel.wysocki/bayesian-parametric-population-models
- Bayeswave https://git.ligo.org/lscsoft/bayeswave

Sample Output of PE

 $d_{\rm L} \,({\rm Mpc})$

 $M_{\text{total}}^{\text{source}}$ (M $_{\odot}$)

(M.)

2021 Summer School on Numerical Relativity and Gravitational Waves

Essence of the Parameter Estimation

Various PE methods

Nested Sampling

2021 Summer School on Numerical Relativity and Gravitational Waves

Nested sampling algorithm(static)

Algorithm 1: Static Nested Sampling

```
// Initialize live points.
```

Draw *K* "live" points{ $\Theta_1, \ldots, \Theta_K$ } from the prior $\pi(\Theta)$.

// Main sampling loop.

while stopping criterion not met do

Compute the minimum likelihood \mathcal{L}^{\min} among the urrent set of live points.

Add the *k*th live point Θ_k associated with \mathcal{L}^{\min} to a list of "dead" points.

Sample a new point Θ' from the prior subject to the constraint $\mathcal{L}(\Theta') \geq \mathcal{L}^{\min}$.

Replace $\boldsymbol{\Theta}_k$ with $\boldsymbol{\Theta}'$.

```
//% \left( \mathcal{A}^{\prime}\right) =0 Check whether to stop.
```

Evaluate stopping criterion.

end

```
// Add final live points.
```

while K > 0 do

Compute the minimum likelihood \mathcal{L}^{\min} among the urrent set of live points.

Add the *k*th live point Θ_k associated with \mathcal{L}^{\min} to a list of "dead" points.

Remove Θ_k from the set of live points.

Set K = K - 1.

end

Nested sampling algorithm(Dynamic)

Algorithm 2: Dynamic Nested Sampling

```
// Initialize first set of live points.
Draw K "live" points \{\Theta_1, \ldots, \Theta_K\} from the prior \pi(\Theta).
// Main sampling loop.
Set \mathcal{L}^{\min} = 0 and K_0 = K.
while stopping criterion not met do
    // Get current number of live points.
                                                                                                      else
    Compute the previous number of live points K and the current number of live points K'.
    if K' > K then
                                                                                                          while K' < K do
       // Add in new live points.
        while K' > K do
            Sample a new point \Theta' from the prior subject to the constraint \mathcal{L}(\Theta') > \mathcal{L}^{\min}.
            Add \Theta' to the set of live points.
            Set K = K + 1.
                                                                                                          end
        end
                                                                                                      end
        // Replace worst live point.
        Compute the minimum likelihood \mathcal{L}^{\min} among the urrent set of K live points.
        Add the kth live point \Theta_k associated with \mathcal{L}^{\min} to a list of "dead" points.
        Replace \Theta_k with \Theta'.
                                                                                                  end
    else
```

```
// Iteratively remove live points.
            Compute the minimum likelihood \mathcal{L}^{\min} among the urrent set of K = K' live points.
            Add the kth live point \Theta_k associated with \mathcal{L}^{\min} to a list of "dead" points.
            Remove \Theta_k from the set of live points.
            Set K = K - 1.
   // Check whether to stop.
   Evaluate stopping criterion.
// Add final live points.
while there are live points remaining do
   Compute the minimum likelihood \mathcal{L}^{\min} among the urrent set of live points.
   Add the kth live point \Theta_k associated with \mathcal{L}^{\min} to a list of "dead" points.
   Remove \Theta_k from the set of live points.
```

end

Bilby

Bilby (a user-friendly Bayesian inference library)

- Welcome to bilby's documentation! bilby 1.1 documentation
 (ligo.org)
- Arxiv:1811.02042
- Arxiv:2006.00714
- Anaconda environment

Example Gaussian

#!/usr/bin/env python3

An example of how to use bilby to perform parameter estimation for non-gravitational wave data consisting of a Gaussian with a mean and variance

import bilby
import numpy as np

A few simple setup steps
label = 'gaussian_example'
outdir = 'outdir'

Here is minimum requirement for a Likelihood class to run with bilby. In this
case, we setup a GaussianLikelihood, which needs to have a log_likelihood
method. Note, in this case we will NOT make use of the `bilby`
waveform_generator to make the signal.

Making simulated data: in this case, we consider just a Gaussian

```
data = np.random.normal(3, 4, 100)
```

```
class SimpleGaussianLikelihood(bilby.Likelihood):
    def __init__(self, data):
    """
```

A very simple Gaussian likelihood

Parameters

```
-----
```

```
data: array_like
The data to analyse
```

.....

super().__init__(parameters={'mu': None, 'sigma': None})
self.data = data
self.N = len(data)

```
2021-08-18
```

• Data : *N*(3,4)

def log_likelihood(self):

And run sampler

result = bilby.run_sampler(
 likelihood=likelihood, priors=priors, sampler='dnest4', npoints=50000,
 walks=100, outdir=outdir, label=label)
result.plot_corner()

2021 Summer School on Numerical Relativity and Gravitational Waves

Example Gaussian

2021 Summer School on Numerical Relativity and Gravitational Waves

PyCBC Inference

- Python toolkit for CBC analysis (<u>https://github.com/ligo-cbc/pycbc</u>)
 - Workflows
 - Waveform generations
 - PSD estimation
 - Matched filtering
 - Offline PyCBC coincidence search

PyCBC is a software package used to explore astrophysical sources of gravitational waves. It contains algorithms to analyze gravitational-wave data, detect coalescing compact binaries, and make bayesian inferences from gravitational-wave data. PyCBC was used in the first direct detection of gravitational waves and is used in flagship analyses of LIGO and Virgo data.

Workflow topology

Sampler, waveform, and prior choices

Summary

- Enough independent samples following selected posterior distribution
- LALInference
 - Monte Carlo Markov Chain(MCMC)
 - Nested Sampling
- Bilby
 - Many sampling methods implemented Python library
- PyCBC Inference

PESummary

PESummary(post process)

- PESummary | Home PESummary 0.12.1+46.gfa604f0.dirty documentation (ligo.org)
- PESummary: the code agnostic Parameter Estimation Summary page builder (arxiv.org) # read in the data fn = "GW190814_posterior_samples.h5"

import useful python packages %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as sns import h5py

data = h5py.File(fn, 'r')

print out parametrized waveform family names ("approximants" in LIGO jargon). print('approximants:'.data.kevs())

print out top-level data structures for one approximant. Here fore example we use the combined samples # between IMRPhenomPv3HM and SEOBNRv4PHM. The data structure is the same for all approximants. print('Top-level data structures:'.data['combined'].kevs())

extract posterior samples for one of the approximants posterior_samples = data['combined']['posterior_samples'] print('data structures in posterior_samples:',posterior_samples.dtype) pnames = [item for item in posterior_samples.dtype.names] print('parameter names:'.pnames)

get samples for one of the parameters m2 = posterior_samples['mass_2_source'] print('mass_2 shape, mean, std =',m2.shape,m2.mean(),m2.std())

smooth it from scipy.stats.kde import gaussian_kde hs = gaussian_kde(m2)

histogram, and overlay the smoothed PDF plt.figure() h. b. o = plt.hist(m2.bins=100) hsmoothed = hs(b)*len(m2)*(b[1]-b[0]) plt.plot(b,hsmoothed) plt.xlabel('mass_2') plt.vlabel('posterior PDF') plt.show()

2021-08-18

data.close() 2021 Summer School on Numerical Relativity an

release memory for the data

#del data

PESummary Example(GW190814)

PESummary | Home — PESummary 0.12.1+46.gfa604f0.dirty documentation (ligo.org)

Run in anaconda

https://dcc.ligo.org/DocDB/0168/P2000183/010/GW190814_posterior_samples.html

2021-08-18

²⁰²¹ Summer School on Numerical Relativity and Gravitational Waves

It takes long time, 300s/iteration, 200 iterations ~ 20hrs

PESummary Example(legacy)

PESummary Example(legacy)

Fisher Information Matrix

Fisher information matrix

- Likelihood $p(M|D) \propto e^{-\frac{1}{2}L_p}$
- log-Likelihood $\ln p(M|D) \propto -\frac{1}{2}L_p(\vec{\theta}, D)$
- Taylor expansion around peak parameter $\hat{\theta}$

•
$$\ln p(M|D) \propto -\frac{1}{2}L_p(\vec{\theta}, D) = -\frac{1}{2}L_p(\hat{\theta}, D) - \frac{1}{2}\frac{\partial L_p(\vec{\theta}, D)}{\partial \theta_j}(\theta_j - \hat{\theta}_j) - \frac{1}{2}\frac{\partial^2 L_p(\vec{\theta}, D)}{\partial \theta_j \partial \theta_k}(\theta_j - \hat{\theta}_j)(\theta_k - \hat{\theta}_k) + \dots = -\frac{1}{2}L_p(\hat{\theta}, D) - \frac{1}{2}\frac{\partial^2 L_p(\vec{\theta}, D)}{\partial \theta_j \partial \theta_k}(\theta_j - \hat{\theta}_j)(\theta_k - \hat{\theta}_k) + \dots$$

Likelihood for Data Fitting

• Measured values y_{i_b} with Gaussian Error Distribution

•
$$\chi^2 = \sum_{i=1}^B \sum_{i_b} \frac{\left(f_b(\theta) - y_{i_b}\right)^2}{\sigma_b^2}$$

- Observation probability of data y_{i_b} if parameter is θ
- $P(y_{i_b}|\theta) \propto e^{-\frac{1}{2}\chi^2}$: Likelihood
- If one assume uniform prior for parameters, Bayes' theorem says

•
$$P(\theta|y_{i_b}) = P(y_{i_b}|\theta)$$

Super Novae Data

Baryon Acoustic Oscillation

- Number of bins ~ number of observed angular frequency
- $f_b(p) \sim$ fitting function for each observation bins
- y_{i_h} ~ observed data set for each observation bins : amplitude

Galaxy Cluster Counter

Microso2020@@_1BETF_Final.doc (arxiv.org)

Weak Lensing

Microsoft Word - DETF_Final.doc (arxiv.org)

2021-08-18

Fisher Matrix

•
$$\langle \chi^2(\theta) \rangle = \langle \chi^2 \rangle + \left\langle \frac{\partial \chi^2}{\partial \theta_j} \right\rangle \delta \theta_j + \frac{1}{2} \left\langle \frac{\partial^2 \chi^2}{\partial \theta_j \partial \theta_k} \right\rangle \delta \theta_j \delta \theta_k + \cdots$$

• $\langle \cdot \rangle$ means evaluate at extreme parameter θ_0

•
$$\left\langle \frac{\partial \chi^2}{\partial \theta_j} \right\rangle_{\theta_0} = 0$$

•
$$\langle \chi^2(\theta) \rangle = \langle \chi^2 \rangle + \frac{1}{2} \left\langle \frac{\partial^2 \chi^2}{\partial \theta_j \partial \theta_k} \right\rangle \delta \theta_j \delta \theta_k + \dots = \langle \chi^2 \rangle + F_{jk} \delta \theta_j \delta \theta_k + \dots$$

• $F_{jk} = \frac{1}{2} \left\langle \frac{\partial^2 \chi^2}{\partial \theta_j \partial \theta_k} \right\rangle = \sum_b \frac{N_b}{\sigma_b^2} \frac{\partial f_b}{\partial \theta_j} \frac{\partial f_b}{\partial \theta_k}$ proportional to gradient of measure function

Example Simulation

- We want to fit a data with $y = a\theta$
- Sample Data is generated as follows
- $y_i = a\theta_i + N(a\theta_i, \sigma_i)$
- Each data point y_i is average of N_i random variable $r = a\theta_i + N(a\theta_i, \sigma_i)$
- σ_i vary in range (s_0, s_1)

Example Simulation

#Sample calculation for Fisher Matrix meaning # sample data is generated by y = a*theta + n # a = 1, 0<theta<1, n ~ N(a*theta, sigma) # 0.1 < sigma < 0.3 # for each theta, averaged value is observed import os import numpy as np import scipy import matplotlib.pyplot as plt

randFloat = np.random.rand(5)
#print("randfloat between 0.0 and 1.0:", randFloat)
def chi2(x, y, s, a, N):
 ch0 = 0
 for i in range(N):
 ch0 += ((a*x[i] - y[i])/s[i])**2
 return ch0

def fisher(a, s0, s1): # equal spaced theta points N = 100nb = 10 dth = 1.0/Ntheta = [] for i in range(N): theta.append(i*dth) #print("theta : ", theta) *# random sigma values between s0 and s1* #s0 = 0.1 #s1 = 0.3sigmas = s0 + np.random.rand(N)*(s1 - s0)#print("sigma : ", sigmas) # observation data as y = a * theta + noise data = [] y = [] #a = 1.0for i in range(N): v0 = a*theta[i] yb = [] for j in range(nb): r = np.random.normal(v0.sigmas[i]) vb.append(r)) data.append(op.mean(yb)) #print("average = ", np.mean(data), ", stddev = ", np.std(data)) #print("data :", data)

a0, b0 = np.polyfit(theta, data, 1)
for i in range(N):
 y.append(a0*theta[i])
print("best fit a = ", a0, ", b = ", b0)
scales = np.linspace(-5.0, 5.0, N)
#print("scales : ", scales)
chi2s = []
for i in range(N):
 chi2s.append(chi2(theta, data, sigmas, scales[i], N))
#print("chi2 : ", chi2s)
plt.scatter(theta, data)
plt.xlabel("theta")
plt.ylabel("y")
plt.title("y = theta + n")
plt.show()

plt.plot(theta, data)
plt.xlabel("theta")
plt.ylabel("y")
plt.title("y = theta + n")
plt.show()

#plt.plot(theta, data)

plt.xlabel("theta")
plt.ylabel("y")
plt.title("y = theta + n")
plt.scatter(theta, data, color="black")
plt.plot(theta, y, label="Linear Fit", color="red")
plt.legend()
plt.show()

plt.plot(scales, chi2s)
plt.xlabel("slope")
plt.title("chi-square")
plt.show()
2021 Summer School on Numerical Relativity and Gravitational Waves
return chi2s, scales

chi2s1, scales1 = fisher(1.0, 0.1, 0.3)

chi2s2, scales2 = fisher(1.0, 0.1, 0.5)

chi2s3, scales3 = fisher(1.0, 0.5, 0.8)

chi2s4, scales4 = fisher(1.0, 1.0, 3.0)

$a = 1, s_0 = 0.1, s_1 = 0.5$

1.0

0.8

0.6

0.02021-08-18

0.4

theta

chi2s2, scales2 = fisher(1.0, 0.1, 0.5)

best fit a = 0.9376330047628946 , b = 0.03614953147962345

175

2021 Summer School on Numerical Relativity and Gravitational Waves

1.0

$a = 1, s_0 = 0.5, s_1 = 0.8$

chi2s3, scales3 = fisher(1.0, 0.5, 0.8)

best fit a = 1.0247573110158383 , b = 0.005213721534364346

$a = 1, s_0 = 1.0, s_1 = 3.0$

theta

chi2s4, scales4 = fisher(1.0, 1.0, 3.0)

best fit a = 0.8566797062723266 , b = 0.03459640049619748

Comparison

Comparison

```
plt.xlabel("theta")
plt.ylabel("y")
plt.title("Data")
plt.scatter(theta1, data1, label="s0=0.1, s1=0.3", color="red")
plt.plot(theta1, y1, color="red")
plt.scatter(theta1, data2, label="s0=0.1, s1=0.5", color="blue")
plt.plot(theta1, y2, color="blue")
plt.scatter(theta1, data3, label="s0=0.5, s1=0.8", color="green")
plt.plot(theta1, y3, color="green")
plt.scatter(theta1, data4, label="s0=1.0, s1=3.0", color="cyan")
plt.plot(theta1, y4, color="cyan")
plt.legend()
plt.show()
```


Fisher Matrix

•
$$F_{jk} = -\left(\frac{\partial^2 \ln p(M|D)}{\partial \theta_j \partial \theta_k}\right)$$

- Cramer-Rao lower bound
- $\langle \delta \theta_j \delta \theta_k \rangle \ge (F^{-1})_{jk}$ it is same for Gaussian
- Let x is a random number of standard normal distribution
- pdf of x is $\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
- Suppose that $y = x^2$
- What is the pdf of y?
- Let y = g(x) and pdf of x is $f_X(x)$
- How to find pdf of y, $f_Y(y)$

- $x = g^{-1}(y)$, since y = g(x) monotonic function
- $dx = \frac{dg^{-1}(y)}{dy}dy$
- Distribution of x is $f_X(x)dx$
- $f_X(x)dx = f_X(g^{-1}(y))\frac{dg^{-1}(y)}{dy}dy = f_Y(y)dy$
- Hence $f_Y(y) = f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy}$
- If $g(x) = x^2$, then $x = g^{-1}(y) = \pm \sqrt{y}$, $y \ge 0$
- $f_Y(y) = 2f_X(g^{-1}(y))\frac{dg^{-1}(y)}{dy} = \frac{2}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{d\sqrt{y}}{dy} = \frac{1}{\sqrt{2}\sqrt{\pi}}y^{-\frac{1}{2}}e^{-\frac{y}{2}}, \chi_1^2$ distribution

•
$$y = x^2$$
 and $x \sim N(0,1)$
• $y < 0, P(Y < y) = 0$
• $y \ge 0, P(Y < y) = P(X^2 < y) = P(|X| < y) = P(-\sqrt{y} < X < \sqrt{y}) = F_X(\sqrt{y}) - F_X(-\sqrt{y}) = F_X(\sqrt{y}) - (1 - F_X(\sqrt{y})) = 2F_X(\sqrt{y}) - 1$
• $f_Y(y) = \frac{d}{dy}P(Y < y) = 2\frac{d}{dy}F_X(\sqrt{y}) = 2\frac{d}{dy}\int_{-\infty}^{\sqrt{y}} \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \frac{2}{\sqrt{2\pi}}e^{-\frac{y}{2}}\frac{d\sqrt{y}}{dy} = \frac{1}{\sqrt{2}\sqrt{\pi}}y^{-\frac{1}{2}}e^{-\frac{y}{2}} = \frac{1}{2^{1/2}\Gamma(\frac{1}{2})}y^{-\frac{1}{2}}e^{-\frac{y}{2}}$

•
$$y_i = x_i^2$$
, $Q = \sum_{i=1}^k y_i = \sum_{i=1}^k x_i^2$, $x_i \sim N(0,1)$

• pdf of Q is $\chi_{k'}^2$, χ^2 distribution with k degrees of freedom

 χ^2 distribution

In[22]:= Plot[Table[PDF[ChiSquareDistribution[v], x], {v, {0.5, 3, 5}}] // Evaluate,

Pearson's chi-squared(χ^2) test process

- 1. Calculate χ^2 , sum of squared deviation between observed and theoretical values
- 2. Determine the degrees of freedom(dof)
 - 1. Goodness-of-fit : number of observations number of parameters
- 3. Select level of confidence
- 4. Compare χ^2 to critical value for given dof and confidence level
- 5. Sustain or reject the null hypothesis. $\chi^2 > \text{critical}$: reject H_0 , $\chi^2 < \text{critical}$: sustain H_0 , but not necessarily accepted

Pearson's chi-squared(χ^2) test

•
$$\chi^2 = \sum \frac{(y_i - y(x_i))^2}{\sigma_i^2}$$

• $\chi^2_{\nu} = \frac{\chi^2}{\nu} = \frac{s^2}{\langle \sigma_i^2 \rangle}$
• $s^2 = \frac{1}{N-m} \sum w_i (y_i - y(x_i))^2$
• $w_i = \frac{1/\sigma_i^2}{(1/N) \sum (1/\sigma_i^2)}$

Other kind of test

Other kind of test

- Anderson-Darling test
- Kuiper's test
- Shapiro-Wilk test
- Jarque-Bera test
- Goodness of fit

References

- Interferometer techniques for gravitational-wave detection (nih.gov) (Living Rev. Relativ. 2017 August 15)
- Maggiore, "Gravitational Waves: Volume 1, Theory and Experiments"
- Creighton & Anderson, "Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis"
- P. Jaranowski, A. Kerolak, "Analysys of Gravitational-Wave Data", Cambridge University Press, 2009
- J.T. Whelan, "The Geometry of Gravitational Wave Detection", T1300666

Thanks! Questions?