Imaging black holes with the EHT: how does it complement studies of strong gravity (1)

Jae-Young Kim (1,2)

Korea Astronomy and Space Science Institute, Daejeon, Korea (jykim@kasi.re.kr)
 Max Planck Institute for Radio Astronomy, Bonn, Germany

19 August 2021, 2021 NRGW summer school, Yeosu & Online

Acknowledgements: S. Issaoun, A. Chael, L. Medeiros, and the EHTC for presentation materials

Main goal of this lecture

A black hole in an SF movie (~5 min) BLACK HOLES THE EDGE OF ALL WE KNOW

A scientific documentary (~1 hr; available on Netflix)

The real EHT (>months)

Main goal of this lecture

A black hole in an SF movie (~5 min)

BLACK HOLES THE EDGE OF ALL WE KNOW

A scientific documentary (~1 hr; available on Netflix)

The real EHT (>months)

Where we could hopefully arrive at after this lecture

Outline

- Intro -- Tests of GR, Supermassive black holes (SMBH), and VLBI/EHT
- Basics of radio interferometry and EHT data processing
- Testing GR with the EHT image of M87*
- Astrophysics of M87(*) and numerical simulations
- Ongoing studies with/relevant to the EHT
- (Time permits) long-term future perspectives

Introduction GR, SMBH, and VLBI/EHT

General relativity (GR) -- a very successful theory

- Describing space-time as curvature due to gravity, instead of a steady and stationary background
 - Becomes unavoidable when $GM/Rc^2 \sim 1$. In Astronomy:
 - Compact objects; White dwarfs, Neutron stars, Black holes, ...
 - Cosmology (the Universe)
 - Gravitational waves

Serious challenges still remain

- Although most successful, GR still has challenges
 - On small scales where quantum physics matters (e.g., existence of event horizon, singularity, ...)
 - Cosmological problems -- dark matter, dark energy, recent Hubble tension, ...
- Many (*many!*) alternative theories exist (see right)
- New observational tests always required

Publication year(s)	Author(s)	Theory name	Theory type
1922[5]	Alfred North Whitehead	Whitehead's theory of gravitation	Quasilinear
1922, ^[13] 1923 ^[14]	Élie Cartan	Einstein-Cartan theory	Non-metric
1939[15]	Markus Fierz, Wolfgang Pauli		
1943 ^[16]	George David Birkhoff		
1948 ^[17]	Edward Arthur Milne	Kinematic Relativity	
1948[18]	Yves Thiry		
1954 ^{[19][20]}	Achilles Papapetrou		Scalar field
1953 ^[21]	Dudley E. Littlewood		Scalar field
1955 ^[22]	Pascual Jordan		
1956 ^[23]	Otto Bergmann		Scalar field
1957[24][25]	Frederik Belinfante, James C. Swihart		
1958, ^[26] 1973 ^[27]	Huseyin Yilmaz	Yilmaz theory of gravitation	
1961 ^[7]	Carl H. Brans, Robert H. Dicke	Brans-Dicke theory	Scalar-tensor
1960, ^[28] 1965 ^[29]	Gerald James Whitrow, G. E. Morduch		Scalar field
1966 ^[30]	Paul Kustaanheimo [de]		
1967 ^[31]	Paul Kustaanheimo (de), V. S. Nuotio		
1968 ^[32]	Stanley Deser, B. E. Laurent		Quasilinear
1968 ^[33]	C. Page, B. O. J. Tupper		Scalar field
1968 ^[34]	Peter Bergmann		Scalar-tensor
1970 ^[35]	C. G. Bollini, J. J. Giambiagi, J. Tiomno		Quasilinear
1970 ^[36]	Kenneth Nordtvedt		
1970 ^[37]	Robert V. Wagoner		Scalar-tensor
1971 ^[38]	Nathan Rosen		Scalar field
1975 ^[39]	Nathan Rosen		Bimetric
1972, ^[10] 1973 ^[40]	Ni Wei-tou		Scalar field
1972[41]	Clifford Martin Will, Kenneth Nordtvedt		Vector-tensor
1973 ^[42]	Ronald Hellings, Kenneth Nordtvedt		Vector-tensor
1973 ^[43]	Alan Lightman, David L. Lee		Scalar field
1974 ^[44]	David L. Lee, Alan Lightman, Ni Wei-tou		
1977 ^[45]	Jacob Bekenstein		Scalar-tensor
1978 ^[46]	B. M. Barker		Scalar-tensor
1979 ^[47]	P. Rastall		Bimetric

Taken from Wikipedia

(Some) classical tests of GR in the weak field regime

- GR predictions excellently matching observations (see also <u>here</u> for more tests)
- However, these tests do not probe well the "strong" field regime

Landscape of modern tests of GR

- Photon trapping due to strongly curved spacetime around black hole
 - the **BH mass** dominates the size
- The exact shape can depend on **BH spin** (Bardeen 1973), but not dominant
- Light source also matters, but not dominant for the presence of photon ring (next lecture)

- Photon trapping due to strongly curved spacetime around black hole
 - the **BH mass** dominates the size
- The exact shape can depend on **BH spin** (Bardeen 1973), but not dominant
- Light source also matters, but not dominant for the presence of photon ring (next lecture)

Early studies of BH shadow (theory, selective)

- Schwarzschild solution (Schwarzschild 1916)
- Kerr solution (Kerr 1963)
- Wheeler coins the term "Black Hole" (1967)
- Initiating studies of gravitational lensing by BH (Cunningham & Bardeen 1972; Bardeen 1973)
- First simulations of a thin disk around non-spinning BH (Luminet 1979)
- First simulations of a thin disk around spinning BH (Viergutz 1993)
- First simulations of astrophysical SMBH image for Sgr A* (Falcke et al. 2001)

Origin of astrophysical "supermassive" black holes (SMBHs) (10^6 -- 10^9 Msun)

Evidence for the presence of SMBHs in the early Universe

inferred SMBH mass ~ 10^9 Msun.

Evidence for the evolution of SMBHs through cosmic time

Anatomy of an astrophysical, accreting SMBH

Anatomy of an astrophysical, accreting SMBH

Imaging a SMBH: calculating the apparent angular sizes of the photon capture diameter

1 micro-arcsec (1 uas) = 1e3 mas

How to achieve a very high angular resolution?

• Fundamental angular resolution in optics:

- To achieve very high angular resolution:
 - As short wavelength as possible (radio? NIR? optical? X-ray?)
 - As large aperture as possible (few meters? Kilometers? Earth-size?)
- Technical limitations exist; need to find an optimal point

Also need to see through the opacity barrier

GRMHD+GRRT simulation (next lecture)

Observing EM freq.: 86 GHz \rightarrow 230 GHz

Video credit: CK Chan

Optimal point: Earth-sized synthetic aperture observing at 1.3 mm wavelength

$$\theta \sim \frac{\lambda}{D} = \frac{1.3mm}{10^4 km} \sim 10^{-10} \mathrm{rad}$$

~ 20 micro-arcsec (uas); Possible to image M87 and Sgr A*!

Very Long Baseline Interferometry (VLBI): microscope to dissect the Universe

Developing mm-VLBI over >30 years

Observatories:

APEX: Atacama Pathfinder Experiment (North Chile) CARMA: Combined Array for mm Astronomy (California) EF: Effelsberg (MPIfR Bonn) HK: Haystack (Massachusetts) JCMT: James Clerk Maxwell Telescope (Hawaii) KP: Kit Peak (Arizona) LMT: Large mm Telescope (Mexico) ON: Onsala (Sweden) OV: Owens Valley (California) PB: Plateau de Bure (France) PV: Pico Veleta (Spain) SMT: Submm Telescope (Arizona) SPT: South Pole Telescope Credit: E. Ros

The Event Horizon Telescope (EHT)

- A network of 8 telescopes (+1 in 2018, +3 in 2021) observing at 230 GHz (and higher)
- Prime science goals
 - Imaging black holes
 - Testing General Relativity
 - Understanding BH accretion
 - Understanding jet genesis
- FYI: operated by 13 board institutes (Korea engaging as a part of the East Asian Observatory)

The Event Horizon Telescope Collaboration (EHTC)

- Foundation of the formal collaboration in 2017 (the year of the first official observing run)
- >200 affiliated scientists from the world (incl. those from Korea)

Basics of radio interferometry with EHT as an example

Let's observe M87*: a single radio telescope

A far-field **point source** of power (P)=1 Jy at zenith

A telescope (**D=20m**)

 \leq

Picture: a Korean VLBI Network (KVN) antenna

- Amplitude/power measured by the radio telescope:
 - Voltage = A*Cos(2*pi*nu*t)
 - *P*=<*V(t)*^2>=1 Jy (with proper calibration)
- Angular resolution towards the source:
 - ~ *lambda/D* ~ 5e-4 rad ~ 100 arcsec = 10^5 mas

Let's observe M87*: two separated telescopes

- Setup:
 - Two identical telescopes of D=20m
 - Observing frequency = 30 GHz (lambda=1cm)
 - Telescope separation (baseline length) B = 100 km
 - Ignore all the electronics errors and Earth's curvature
 - Backend: multiply voltages from the two telescopes and do time-averaging
- Result:
 - *R*=<*V1*V2>=1 Jy* (note no delays of wave arrival timings at the two telescopes)
 - What about the angle dependence of this response (light coming from off-axis)?

Let's observe M87*: small angular offsets

- The wavefront arrives late at Telescope 2!
 - This delay is a function of the angular offset from the zenith
 - Also causing constructive/destructive interference

• With a bit of geometry and calculations...

Let's observe M87*: small angular offsets

- The response is very sensitive to the angle
 - Peak-to-peak: ~20 mas, read from the plot
 - Notice *lambda/B* ~ 20 mas!
- This *R* function allows a very precision position localization on the sky

Let's observe M87*: longer spacing

- The same setup as before, but increase *B* from $100km \rightarrow 300km$
- The angular response is sharpened ~3 times

Let's observe M87*: longer spacing

- The same setup as before, but increase B from $100km \rightarrow 300km$
- The angular response is sharpened ~3 times
- Notice *lambda/B* ~ 7 mas

- B=300 km, now *nu*: 30 → 60 GHz lambda=0.5 cm Ο
- *lambda/B* ~ 3.4 mas

Let's observe M87*: Higher frequency

- B=300 km, now *nu*: 30 → 60 GHz
 lambda=0.5 cm
- lambda/B ~ 3.4 mas
- This response is called "fringe"

- Assume: M87* is at zenith (BH at *x*=0) and has 0.5 Jy total flux
 Total flux can be known from single-dish obs.
- Setup: 100 km baseline, *nu*=230 GHz (*lambda*=1.3mm)
- What will be the output signal of this baseline?

- Assume: M87* is at zenith (BH at *x*=0) and has 0.5 Jy total flux
 Total flux can be known from single-dish obs.
- Setup: 100 km baseline, *nu*=230 GHz (*lambda*=1.3mm)
- What will be the output signal of this baseline?

- Extended structure = collection of point sources
- Response = <Fringe(theta) x M87* image(x)> = 0.5 Jy
 - \circ $\hfill Here the averaging runs over the angle offset$

- Assume: M87* is at zenith and has 0.5 Jy total flux
- Setup: 10,000 km baseline, *nu*=230 GHz (*lambda*=1.3mm)
 - (left) APEX at Chile and (right) IRAM 30m at Spain
- What will be the output signal of this baseline?

- Assume: M87* is at zenith and has 0.5 Jy total flux
- Setup: 10,000 km baseline, *nu*=230 GHz (*lambda*=1.3mm)
 - (left) APEX at Chile and (right) IRAM 30m at Spain
- What will be the output signal of this baseline?

 Response = <Fringe(*theta*) x M87* image(*x*)> ~ 0.1 Jy (very rough rounding)

How to interpret these measurements?

How to interpret these measurements?

- The source is "**unresolved**" at 100km baseline with 0.5 Jy correlated flux
- The source is "**resolved**" at 10,000km length with 0.1 Jy correlated flux
 - Evidence for some structure at 1.3mm/10,000km ~ 30 uas scale

• Each baseline measures the source structure and flux on their corresponding resolution

- "Fourier decomposition"
- Is the source a Gaussian? ring? disk?

How to interpret these measurements?

- The source is "**unresolved**" at 100km baseline with 0.5 Jy correlated flux
- The source is "resolved" at 10,000km length with 0.1 Jy correlated flux
 - Evidence for some structure at 1.3mm/10,000km ~ 30 uas scale
- Each baseline measures the source structure and flux on their corresponding resolution
 - "Fourier decomposition"
- Is the source a Gaussian? ring? disk?
 - Need more measurements at various baseline lengths

Real EHT M87 observations with Earth rotation

(Ryle 1974; Nobel prize in Physics)

(Fourier space coverage)

each spatial scales

Animation credit: D. Palumbo, M. Wielgus

Some further remarks (advanced topics)

- **Pointing:** we can electronically add "delays" to *V1*, to move our "zenith" to any sky position (note: real waves are not monochromatic)
- **Response:** in practice, two *R* values are computed with different artificial lags, to catch both even and odd-symmetric parts
 - Complex *R*: "amplitudes" and "phases"
- Dimensions: sky brightness *l(x,y)* and baseline measurements *V(u,v)* are 2D: *V(u,v)=FT(l(x,y))* (van Cittert-Zernike theorem)
- For deeply interested students, see <u>this</u> textbook (open access)

VLBI data acquisition...

nae

ndation

- Digitizers

- Downconverters

- Recorders

EHT NSF press release about M87*, April 10, 2019 Credit: NSF

Hydrogen maser (atomic clock, ~pico-sec level accuracy): generate precise timestamps of each voltage record Image from Wikipedia

Science

Foundation

... and processing (the "X" and "<>") carefully with Earth geometry and clock models

An example VLBI correlator at MPIfR, Bonn, Germany (1360 cores, 56 Gbps interconnection, > 1PB storage) Image credit: MPIfR

BTW, why big discoveries now? Drastic improvements in data recording

~1 TB in 2 min; ~700 TB per day per station

Five orders of magnitudes improvement over the last 5 decades!

Origin of errors and need for calibration

- Not ideal antennas -- surface error, receiver noise, polarization impurity, antenna position errors, ...
- **Electronics** -- analog/digital conversion, bandpass filters, frequency down-conversion, ...
- **Atmosphere** -- opacity changes, phase attenuation, ...
- Human/machine errors -- scheduling/observation failures, ...

EHTC+2019c

VLBI data calibration example (advanced topic)

source structure phase varies on ~hour but can only average for ~few seconds due to atmosphere

can average for entire scan

Slide credit: Blackburn, Issaoun, EHTC

So far...

Making an image from VLBI data

Image Credit: Bouman

Making an image from VLBI data

Image Credit: Bouman

How to overcome ambiguity: blind imaging

Team 1

Americas

US & Chile (SAO, U. Arizona, U. Concepcion)

Team 2

Global

US, Japan, Netherlands (MIT, NAOJ, Hiroshima U., Radboud U.)

New Techniques

The Imaging WG was divided into four independent teams

Team 4

East Asians

Korea, Japan & Taiwan (ASIAA, KASI, NAOJ)

Team 3

Cross Atlantic

US, Spain, Germany, Finland (Boston U, MPIfR, IAA, Aalto)

Traditional Techniques

Each team <u>blindly</u> reconstructed images **Goal:** Assess human bias

Slide credit: K. Akiyama

How to overcome ambiguity: blind imaging

Slide credit: K. Akiyama

2nd EHT Collaboration imaging workshop on M87* July 2018 at Harvard, Cambridge

Fiducial (i.e., best) maps from the three pipelines (after optimization)

The best out of ~50,000 images

Image-domain feature extraction

Describe the ring by (1) the width, (2) r_in, (3) r_out, (4) diameter, and (5) the (intensity-weighted) position angle

Parameter extraction by simple geometric modeling

Start with a circular disk and remove a smaller circular disk from the interior to produce a ring

Shift the inner hole of the ring to produce a crescent

 \bigcirc

Change the crescent orientation by rotating it

Blur the entire image to soften the artificially sharp edges

Parameter extraction by simple geometric shapes

An example MCMC run on the real EHT visibility dataset

Animation credit: D. Pesce Slide credit: S. Issaoun

EHTC+ 2019f

Final images and extracted parameters of M87*

Falameters of 19167		
Parameter	Estimate	
Ring diameter ^a d	$42\pm3~\mu{ m as}$	
Ring width ^a	$<\!20~\mu{ m as}$	
Crescent contrast b	>10:1	
Axial ratio ^a	<4:3	
Orientation PA	150°-200° east of north	
$\theta_{\rm g} = GM/Dc^{2\ c}$	$3.8\pm0.4~\mu{ m as}$	
$lpha = d/ heta_{ m g} { m d}$	$11^{+0.5}_{-0.3}$	
M ^c	$(6.5\pm 0.7) imes 10^9M_{\odot}$	
Parameter	Prior Estimate	
D ^e	$(16.8 \pm 0.8) { m Mpc}$	
M(stars) ^e	$6.2^{+1.1}_{-0.6} imes 10^9 M_{\odot}$	
M(gas) ^e	$3.5^{+0.9}_{-0.3} imes 10^9M_{\odot}$	

Table 1

Notes.

^a Derived from the image domain.

^b Derived from crescent model fitting.

^c The mass and systematic errors are averages of the three methods (geometric models, GRMHD models, and image domain ring extraction).

^d The exact value depends on the method used to extract d, which is reflected in the range given.

^e Rederived from likelihood distributions (Paper VI).

EHTC+2019a

Newspapers/journals after 11 April 2019

... and 2 years later: M87* polarimetry

Interpretations and EHT science cases to follow in the next lecture