Chapter 1

Introduction to

Hydrodynamics

In this section, we review the fundamental concepts and equations of fluid
dynamics in the flat-space based on Newtonian physics by introducing elas-
tostatics and hydrostatics. After that, we extend and compare the concepts
and equations with those in the Minkowski/curved spacetime to understand
the relativistic fluid dynamics. This note was made by referring to the fol-

lowing references.

« K.S.Thorne and R. D. Blandford, “Modern Classical Physics,” Princeton

University Press (Princeton University Press, 2017).

« J. L. Friedman and N. Stergioulas, “Rotating Relativistic Stars,” Cam-

bridge University Press (Cambridge University Press, 2013).

In this note, we use the natural unit (c = 1). We write down three-dimensional
vectors in bold font, however, to avoid confusion, we distinguish the three-
dimensional metric tensor and the three gravitational acceleration vector by

denoting them as g and g, respectively.
T, T", v, v* : four-dimensional vector

7
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T, T9, v, v' : three-dimensional vector

% ¢ : three-dimensional gravitational acceleration vector (1.1

1.1 Elastostatics

To understand elastostatics, we should understand what the strain tensor
and the stress tensor are. Those two tensors are the generalization of the

displacement and the force in Hooke’s law.
dF — _k.dx (F: restoring force
on surroundings)
¢
(1) a2 =dF=(-Y:5)-az

where T =T;; : stress tensor
dX : directed area element
Y =Y;i ¢ elastic modulus tensor
S = 5;; : strain tensor

T -dX =T;;d¥, Y:S = YijuSk (1.2)
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< R
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Figure 1.1: Generalization of the Hooke’s law

The strain tensor is defined as the gradient of the displacement vector
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without considering any rotations. Since in elasticity theory we don’t mind
the specific orientation of an object, a central focus is on expansion and
shear, and we name the expansion and shear part in the gradient of the

displacement vector the strain:

Displacement vector: At each part, the point x is changed to &(x).
Then the gradient of the displacement vector is given by:

1 . . .
VE = g@g + X 4R (decomposition of the gradient of a displacement vector)

S ~ -~

=S

Vi&j = B(ﬁifj + ﬁjfz‘)} + B(ﬁifj - ﬁj&')}

-

~ ~~ d ~~
(symmetric part) (anti-symmetric part)
(trace of symmetric part) (trace-free of symmetric part) (anti-symmetric part)
~ N ~ NS ~ NS o
1 = 1= - 1= 1 - .
=13 (V-8 gij| + §(Vz‘€j + V;&i) — g(v €)gij | + §(V¢€j — V&)
\_\Gf_) ~ ~~ d ~ ~~ i
=3 =R;;
1
= §@gij + X + Ry (1.3)

V¢

Figure 1.2: Displacement vector in elastostatics

The geometrical description of the displacement vector and its gradient:

. §V
(1) expansion scalar ©: v "~ change of volume

(2) shear tensor: ¥ ~ change of a shape

(3) rotation tensor: R (1.4)
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Emy - Eyr Bz = _Zyy Ryx = *Rry
Eyz‘ - Sy Ryx
¥
Ewy =B Exx Rry

1 | 1
V£=§®g+2+R Szg@g—I—E]

Figure 1.3: Each irreducible part of the gradient of the displacement vector
corresponds to a geometrically specific change. The expansion and shear

parts make up a strain tensor.

As we decompose the gradient of the displacement vector, we can re-

peat the same way on the stress tensor.

trace-free:|

[trace]
N

symmetric

1 PN
Sij = g@gij + Xy

expansion 1 1 shear

(Hooke’s law)

|(T)-dx =dF = (-Y:5) - dz|

|T=-Ko6g - 23|

pressure | | shear stress

1 1 1
T;; = [gTu} + [E(Tij —Tji) — ng]

IV ~~ b

(trace) (trace-free symmetric)
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= Pgij + Tfjhear (1 5)

The coefficients connecting the stress and the shear tensor parts are called

K bulk modulus

- shear modulus

Tspear Sl (1.6)

We can compute the total elastic force acting on the volume by considering

the local condition:
(inward direction)
IS
Fon V (by surroundings) — f T (7d2) = - V '_T av
ov VS~~~

=fastic: elastic force density (outward)

L (elastic force density on a volume element) (1.7)

Figure 1.4: Elastostatic equilibrium

In elastostatic equilibrium, the net force density must be zero.

fon V (by surroundings) + fexternal =0= fnet
( elastic force density on a volume element, fohy=-V - T

( in the presence of G, foxternal = P0g

L ] -V -T+pg=0 ‘ (elastostatic equilibrium)

( Fluids at rest exert isotropic stresses: T = Pg

( -V . T=-V.(Pg)=-VP

L (elastostatic equilibrium in the presence of g) (1.8)
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When the elastic force on the volume element is not balanced with an ex-
ternal force, the net force makes the elastic element move. Then, we should
consider its dynamics. This point will be seen again when we move from the

hydrostatics to hydrodynamics.

fnet = fonV + fexternal #0 — (dynamics) (1 ~9)

As examples of elastostatic equilibrium, in the case of the atmosphere
of Earth, we expect the pressure is about 10°Pa, and for Neutron stars, the

magnitude of the stress at the base of a neutron star crust is about 103! Pa.

When P = P(z), § = —gZ,

h
VP =pyg — P= J pogdz ~ pogh (for a constant mass density)
0

(1) Earth example:
air density: Poair ~ 1kg-m—3
gravity acceleration: g~10ms2
atmospheric scale height: A ~ 10km
L P ~ pogh ~ (1kgm™3)(10m s~2)(10 km) ~ 10° Pa
(2) Neutron star:
solid crust density:  pg ~ 10*6kgm—3

. P GM M ~2x10%%g  (6.67m>kg~s™2) x (2x103°kg) 12 —92
gravity acceleration: ¢ ~ yoe (T0km) 2 ~10**ms

R ~ 10km

crust thickness: h ~ 1km

L P ~ pogh ~ (10"kg m~?)(10"*m s~2)(1km) ~ 10*'Pa (1.10)
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Neutron star

Solid crust

Fluid core

[ e =T s

Figure 1.5: The atmosphere of the Earth and the solid crust of a neutron

star

In this example, we considered the uniform gravitational field. When
dealing with a fluid on the ground, we usually consider the gravitational
acceleration constant everywhere. This is because the length scale of the

laboratory on the Earth’s surface is smaller than the Earth’s radius.

When we express the equation for the elastostatic equilibrium in terms

of the displacement vector, we get the Navier-Cauchy equation given by

= _V.(—-KOg - 2uX)

= (K+ ;N> V(V &)+ uvie

S 1 -
L [ fonv + pog = (K+3u> V(V &)+ pV3E+ pog =0

: Navier-Cauchy equation . (1.11)

1.2 About fluids (density, pressure, velocity)

1.2.1 Solid and fluids

Imagine that there is water in the cup. The shape changes according to the

container (a cup). When we put our hand in the cup, the water changes
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shape without any resistance. This is a normal behavior of a fluid. A fluid
is a substance that is continuously deformed under applied shear stress or

external force, that is, the shear modulus of the fluid is zero.

Solid: | T = —K6g — 23|

Fluid: T= -K0g — 2% — It flows.

N Y
? u—0: change shape continuously

( Fluid resists only relative rates of deformation

d
( {Vg—%@w +R} L{ %:Vv:%eg+a+r

~~ -

=S

\Tz [pov @V + Pg] — (g —2770\

where ¢: bulk viscosity
n: shear viscosity
o trace-free rate of shear tensor

r: rate of rotation tensor (1.12)

1.2.2 Ideal fluid

The stress tensor of most fluids can be decomposed into an isotropic pres-
sure and a viscous term linear in the rate of shear and compression. Under
many conditions, the viscous stress can be neglected over most of the flow,
and diffusive heat conductivity is negligible. The fluid is then called ideal or
perfect.

Ideal(Perfect) fluid: no shear stress, no heat conductivity

— isotropic pressure in the local rest frame of the fluid
(1.13)

In this case, we can observe the macroscopic nature of a fluid as follows:
+ Fluid velocity: The macroscopic continuum approximation is valid.

molecular mean free paths « macroscopic length-scales
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‘ dl\/IAFAPA < dﬂuid scale ‘

( A small part of a fluid looks like moving with the same velocity.

mean local velocity v(x, t) of the fluid’s molecules: fluid’s velocity

| fluid velocity: Vmean for av (%, ) | (1.14)

+ Fluid stress tensor: We study the laws governing ideal fluids. In this
case, the fluids do not oppose a steady shear strain.
L. This is easy to understand on microscopic grounds,
as there is no lattice to deform,
and the molecular velocity distribution remains

locally isotropic in the presence of a static shear.

fluid stress tensor: TfUd = pg (1.15)

1.2.3 Bulk modulus and adiabatic index

The laws of fluid mechanics are equally valid for liquids, gases, and plasmas.
Liquids show different behavior from gases and plasmas, especially under

compression.

Hooke’s law : —kx =
. 1%
solid : —K@:—K7:P(@:0HP:O)
. . 1% (500 dP
| | -KO=—-K— =6P| [=K2, K=-V-=—
iquid v ( " v
5V 6P 8po VdpP
|l-re =12 =2 | (=20 p__L>=
gas, plasma S v 7 ( 0 Pav
(LK =TP)
where K: bulk modulus,
O: expansion 6—‘/ = —%
14 Po
dpo  O(m/V) —m/V? %
oL = sV = 2=
00 m/V m/V 14

= Z—P : adiabatic index for adiabatic process in an ideal gas
1%



16 CHAPTER 1. INTRODUCTION TO HYDRODYNAMICS

(cp, ey specific heats at constant pressure and volume) (1.16)

In the case of liquids, the molecules resist even a small compression, and
this behavior results in large pressure changes. Since the fluid has a non-
zero pressure for zero compression, the bulk modulus relation is given in
the same form as the solid relation except for P to §P. By contrast, gases
and plasmas are much less resistant to compression, and when pressure

doubles, it leads to half the pressure.

solid to liquid: — K© = —K(SVV =P 6P

1% 6P
DO =T — =
gas and plasma © v P

(ex) PV =nRT, dT =0 — 6(PV) = (5P)V + P(5V) =0
P _ WV
PV

L. T =1 (isothermal process) (1.17)

For gases or plasmas, a specific adiabatic index indicates a different thermo-

dynamic process.

1.2.4 Adiabatic index and polytropic process

The adiabatic index I' is defined as the ratio between the specific heats at
constant pressure and volume. For a polytropic process where a particular
form of pressure and volume, Pv* (v: specific volume), is a constant dur-
ing a quasi-equilibrium process, the polytropic index & is the same with the

adiabatic index for an isentropic process.

(1) polytropic process:

k=0 isobaric process

- k=1 isothermal process of ideal gas
| Pv* = constant

k=T isentropic process of ideal gas

k — oo isometric(isochoric) process
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(2) a different form of a polytropic process:

0P Pv* = const. dv* _k”_k_15” _
P i
0P _ v _ om0
P v 0

= | Pocpk = Kpf = Kp(l)H/n : (polytropic EQS)

(K, k(n): polytropic constant, exponent(index))
(3) isentropic process (adiabatic and reversible):
As =0, du = ¢,dT, Pv = RT, (R : specific gas constant)

L d_T_(§>@ - |nT—(5> Inv+C
T Ccy/) v Cy

\'\f'./
=2P _1=DP-1
v

r—1

-2 ()"
Ty Vo Py = ‘ Pl = constant‘ (1.18)

Figure 1.6: Polytropic processes

This finesses the issue of the generation and flow of heat in stellar interi-
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ors, which determines the temperature T'(r) and hence the pressure P(po,T).

Low-mass white-dwarf stars, n = 1.5 polytropes (I" = 1.666)
red-giant stars, n =3 polytropes (I' = 1.333)
giant planets (Jupiter, Saturn), n =1 polytropes (' = 2)

small planets (Mercury), n ~ 0 polytropes (I' = ) (1.19)

An idealization that is often accurate in fluid dynamics is that the fluid is
adiabatic: no heating or cooling from dissipative processes, such as viscosity,
thermal conductivity, or the emission and absorption of radiation. When this
is a good approximation, the entropy per unit mass s of a fluid element is

constant.

1.3 Hydrostatics

The equation of hydrostatic equilibrium for a fluid at rest in a gravitational
field g is the same as the equation of elastostatic equilibrium with a vanish-

ing shear stress,

~ =
et — - !
B -
—V-T
pPg
gy -
e >

Figure 1.7: Hydrostatic equilibrium

(1) hydrostatic equilibrium:
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fon fluid + fexternal =0 = fret ‘ = ‘ =V - Tayid = *Poﬁ‘

Thuia = P9

g="Vo ‘VP = pog = —po VP ‘

(2) constant density (isochores) on the equipotential surface:
V x (VP = —pV®)
L Vpx VB =0 = Vp, | V®
L po = po(P)
(3) constant pressure (the isobars) on the equipotential surface:

VP=—pV® — VPxVd

L dP: *podfb
Do

L AP = _J po(®)dD (1.20)
31

For example, the deepest point in the world’s oceans is the bottom of the
Mariana Trench in the Pacific, 11 km below sea level. Calculating the pres-
sure at the bottom,

okm

podz = (10m/52)J (10%kg/m?)dz = 10%Pa = 10%atm .

—11km

oe]

Pe) =g

z

(1.21)

The equation of hydrostatic equilibrium can be applied in various situations.

108Pa = 103atm

Figure 1.8: The Mariana Trench in the Pacific
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1.3.1 Archimedes’ Law (Buoyant force)

-

E i
=T-dZ
_T.dz Weight
—T-d% —T-d¥ —T.-dZ
. Buoyant force
- Volume of water displaced Buoyant force

Figure 1.9: Archimedes’ law

Archimedes’ law states that, whether a solid body is fully or partially sub-
merged in a uniform gravitational field § = —¢2, the upward buoyant force
of the fluid on the body is equal to the weight of the displaced fluid. Since
the equipotential surface is parallel to the constant pressure surface, we can
replace the solid body by fluid without changing the pressure on the surface

V. In this way, we can derive the Archimedes’ law as follows.

(1) hydrostatic equilibrium:

‘ fon fluid T fexternal = 0 = fret ‘ = ‘ =V - Thuid = —Poﬁ‘

(2) FPUY = — | T.d%
ov

:—JV-TdV
Vv

( 'V - Tsuid = pog (hydrostatic equilibrium)

:—ﬁf podV
v

— _M§ (1.22)
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1.3.2 Non-rotating stars and planets

For non-rotating stars, we can consider a spherical, self-gravitating fluid
body in spherical polar coordinates:

(1) hydrostatic equilibrium:

‘ fon fluid + fexternal = 0 = fret ‘ = ‘ =V - Thuid + pog =0 ‘

Taug = g

I==V2,[VP = i = —pV 2]

(2) VP = —pV®

(P=P(r), ®=2o(r)
o, 1, 1o
(Vi= 6rT+r(?99 rsim‘)@gps&

dpP do
Ls E = —poa (1 23)

Then, from Poisson’s equation, we get an alternative form of the equation

of hydrostatic equilibrium for a non-rotating star as follows.

V2<I> = 47TGp0

1 d [ ,de)
2dr (r dr>_47TGpO

1d (r2dp
r2dr \ po dr

( ><’r'2d’r',J
9 2 r r

Jd (r_d_P) - [T_d_P} - _f 4G por?dr
po dr po dr |, 0

dpP "
F —%GL po(4mr?)dr

S

) = 747TG/)0

=m(r)
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dp Gm(r)

Ls W = —p0 (1 24)

This is a good approximation for solid planets (e.g., Earth) as well as for
stars and fluid planets (e.g., Jupiter) because, at the enormous stresses en-
countered in the interior of a solid planet, the strains are so large that plastic
flow occurs. In other words, the shear stresses are much smaller than the

isotropic part of the stress tensor.

1.3.3 Lane-Emden equation of stellar structure

The polytropes which indicate nonrotating, spherical fluid bodies with the

1+1/n

polytropic equation of state P = Kp, gives a useful equation describing

the stellar structure, which is called the Lane-Emden equation:

(1) V2® = 4nGpy — %% (7'2(3—?> = 47Gpy
PHE
RGO M

@) )~ 52 (pff) ~ —4nGpo

g P — Kp(l)‘i‘l/"l Pro = pO(:e Kpi-l—l/nel-ﬁ-n

=poc™

1d/ » dP =
ol 5 & )
——

it . do
= = Kool (10" §2

1 0
L 2 r( 2K 1/"(1 + n)g > = —4xGpo "
( r=af, X !
47TG,0()C
(52 1 Kpy"(14n) @) e
£ E a?  4nGpo. d€

[ a2 = Keo' (L)
B 47TG/)OC
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1d(.d0\ .
- e (€)= 12

Therefore, the Lane-Emden equation is given by

Lane-Emden equation:

1d( 2d€) — _yn
§2de\” de)
1/n

where ¢ =a 'r, o® = Kpoe (1+n)
‘ 4G poc

(1.26)

The boundary condition d—P

= |,_, = 0 becomes

boundary condition of Lane-Emden equation:

— 971/
po(§ =1 =10) = poc M>‘<9(£=7'=0) =1 atthecenter‘

P = Kpé+1/n

dr

" ¢'(§=r=0)=1atthe center‘

(1.27)

=0 -

r=0 po = pocf™, E=a" "

By integrating the Lane-Emden equation, from & = r = 0 until &,(R) where
po = P =0, we can find the polytrope’s surface with a physical radius R =

agy and its mass M = § po(4mr2)dr.

1 K 1/2 —n n
R= [7@—1— ) } PSPy

0c

471G
=a?¢” =d(at)
R N ) )
M= j po (dn 12 ) dr = 4nR23(R)poc(—£20) |
0~~~

:POCGn:*POCﬁ%/%gz % (by L-E eq.)

n/(n—1)
K 1) /(e
} g/ e )| (1.28)

_ _ +1)
_ 4 pG-n)/-n [ (At DE
g 4rG
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Analytic solutions for this Lane-Emden equation are known forn =0,1,5.

n=1 =30 = (1.29)

For example, Jupiter and Saturn are both made up of an H-He fluid that is
well approximated by a polytrope of index n = 1, P = Kp3, with the same
constant K. Using the information that M) = 2 x 102"kg, Ry = 7 x 10*km,
and Ms = 6 x 10%6kg, we can estimate the radius of Saturn. Since the Lane-
Emden equation has a simple analytic solution, 6§ = sin£/¢, we can also

compute the central density of Jupiter and Saturn.

1.3.4 Rotating star

The equation of hydrostatic equilibrium is readily extended to bodies rotat-
ing rigidly with a uniform angular velocity relative to an inertial frame. In
a corotating frame with the body, the fluid velocity vanishes and the equa-
tion of hydrostatic equilibrium is changed by the centrifugal force per unit

volume as:

(1) hydrostatic equilibrium:

‘ fon fluid + fexternal = 0 = fret ‘ = ‘ =V Thug = _Poﬁ‘

Thuia = P9

g=-Ve ’VP =pog = —poV®P ‘

(2) in the corotating frame:

| VP = po(§+ Geen) = —poV (@ + Deen) |

1
where Geen = — X ( X 1) = —=V®en — Peen = —5( x )2 (1.30)

By using the above relation, we can calculate the discrepancy between the

equatorial and polar radii of a planet. For example,

(1) The surface of a planet is a equipotential surface of ® + ®cep.
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QQRQ
2g
(3) for Earth, g ~10ms 2, R~6x 10°m, Q ~ 7 x 10" °rads™!

(2) Re — R ~

ARgaih ~ 10km (The correct value is 21km.) (1.31)

Equatorial Diameter

12,756 km

¥ Polar Diameter

12,714 km

Figure 1.10: An Oblate shape of the Earth

1.3.5 Conservation laws (Mass)

The total charge and the total particle number inside a 3-dimensional region

V are

total charge = v

(total number) N = §,ndV

When we denote the rate of the charge and particles flowing out through

the boundary of V, 6V as jand S, the integral laws of charge conservation is
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written by
. inn onut _ d J . _
(charge conservation) " & di vpedv-i- wj dX =0
={, VjdV
. dn; dNowt d
(number conservation) " gt at ndV + . S-d 0
=f,, V-Sdv

(1.33)
Then, by considering the volume element time-independent and by using

Stokes’ theorem, we get the differential form of the conservation equation:

. 0
fixed volume element % J pedV — %Pe v
%

v ot
Stokes’ theorem jod¥= J V - jdVv
% %

(charge conservation) Cf)e +V.j=0
L ot

(number conservation) OTTZ +V.S=0

= (conservation law) :

A

a—%(some density) + V - (density flux) = 0

(1.34)
In the differential form of the conservation law, we fixed the position of

volume elements and the partial derivative with respect to time indicates
the density change at the fixed location.

Euler approach:
d

podV:—f po¥ - d%
dt Jy Py

( dV # dV(t), by using Stokes’ theorem
po = =
— dV =—| V- (po0)dV
y ot v
—~~
:Eulerian derivative

_
L 0(§t°+V-(pow:0

(1.35)
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This time derivative and approach are called the Eulerian derivative and the
Eulerian approach. There is an alternative approach. When we assume the
volume element is changing along the flow, we can write the conservation

equation in another form.

Lagrangian approach:

dM d
o dpo dox
= Jadaﬁydz—kfpo (W oydz+--+)
~—~
=(6vy/dx)0x

=(V-v)éV

_ [ [dro _
_J[W—Q—po(v-v) 5V =0

dpo
Ls W +poV-v=20
convective time derivative:
since O{% ==V - (pov) = —Vv-Vpy —poV -v
dpo _ dpo
Ls W = *poV~V— oL +V'Vp0
d 0 . ) ) L
il +v- V| : convective(advective) time derivative (1.36)

In the above explanation, the equation of the Lagrangian approach can be

derived simply from the Eulerian relation by differentiating pov as

. 0 .
mass conservation: % + V- (pov) = 0 (Eulerian approach)

0
6/;0 +(Vpo) - V+po(V -v) =0

L

deg

t

L dro + po(V -v) = 0 (Lagrangian approach) (1.37)

dt

As you can see in the derivation, in the Lagrangian approach, we take the

time derivative of the density of the volume element moving with the fluid.
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Considering a small fluid element, we understand the divergent of the ve-

locity vector is the fluid’s rate of expansion.

5M:p05V
S dsM dp dsv
dt __0 yove
—a - @ g =0
doo  dOV)/dt
L’Ef s v poV -V
dovy/dt_de
v L AT (1.38)

Figure 1.11: Eulerian and Lagrangian approach
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1.3.6 Conservation law (Momentum)

When there is no external force, the mechanical momentum flux is, by def-

inition, the stress tensor T', and the differential conservation law written by

Eulerian approach:

when there’s no external force on the fluid element,

D F(POV)
m dt J ( ()V dV J;) ——=dV

Frn = medV: JV -TdV

d(poV)
ot

+V - [(pov) ®V] = a(ggv) +V-Tm=0 (1.39)

=

Then, we find the mechanical stress tensor of the fluid as
T = poV®V (1.40)

In the presence of external forces, the net force acts on a fluid. By denoting
the net force density as fnet, We obtain the Lagrangian approach relation,

which is just Newton’s law per unit volume.

d(pov
fne‘[: (gz ) +VTm

aop ov
=G Vtrg +W+(pov-V)v
']

“(pov) =0

'j

— N v
Po(% + (pov - V)v

dv

:Poa (1.41)

By writing down the stress tensor of the external force density, we find the

Eulerian momentum conservation equation:

”(qt ) v. T =fret= -V -T;

(T=Tn+T;
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d(pov)

pn +V-T=0 (1.42)

1.3.7 Conservation law (Energy)

For a fluid with an energy density U(x,t) and an energy flux F(x,t), we pro-
ceed in the same way as we did for mass and momentum. The energy con-

servation law is written by

oU
E‘FV-F—O (1.43)

1.4 Hydrodynamics

1.4.1 Fluid stress tensor in hydrodynamics

In this section, we deal with an ideal fluid flowing without dissipative pro-
cesses (viscosity and thermal conductivity), that is, without the entropy change
of a fluid element. When the fluid flows by the external force, the mass and
momentum conservation laws are the same as we explained in the previous

section.

When there is an external force, and the fluid flows,

. 0
mass conservation: % +V (pov) =0
|
) v
momentum conservation: olpov) +V- T =0 (1.44)

ot ——
but this will be changed.
When fluid flows slowly compared to its sound speed, and a gravitational
effect is modest, the fluid density remains nearly constant. In this case, we

can use the incompressible approximation, V -v=0.

For an ideal fluid, the only forces acting on the fluid are a gravitational

force and the fluid’s pressure. Then the momentum conservation law is writ-
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ten by

(1) hydrostatic equilibrium:

‘ 1:on fluid + fexternal =0 = fret ‘ = ‘ =V - Thid + pog =0 ‘

Taug = P9

1= V2. [VP = i = —poV @]

(2) when there is no net force on a fluid element,

d(poV)
ot

(3) when there is a net force on a fluid element,

(pov dv
(gg )+V'Tmzpoa:fnet:0

+ V- [(pov) ®V] =

hydrodynamics: fon fiyig + fexternal = fret # 0

0
Xo¥) G [(pow) @V] = fret = —VP +p07

ot S~~~

for ideal fluid

d(poV)

= 2,
ot

+ V- (pov®V+ Pg) = pod

A -

~~

Tideal fluid

d(poV)
ot

+ V- Tideal fluid = pogd

(3) stress tensor in hydrodynamics:

‘Tﬂuid: Pg — pov®v+ Pg

1.4.2 Euler equation

31

(1.45)

The Euler equation, named after Leonhard Euler, is hyperbolic equations

governing adiabatic and inviscid (zero viscosity) flow. By using the obtained

eqguations in the previous sections, which are the mass and momentum con-

servation laws of fluids, we find the following equation:

d(pov) _ = °
o +V - (pov®V+ Pg) = pog (momentum conservation)
- - ~ ~~ “

=[V:(poVv)v+po(v-V)v

ap &
=L0y4py &L

AN
0po

Y + V- (pov) = 0 (by using the mass conservation equation)
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op ov
L =Vt poo + [VApoV)V + po(v - V)V + pod

( x+
£o
ov dv vpP . .
L E+(V.v)vzaf—ﬁ+g for an ideal fluid

(1.46)

This equation is called the Euler equation. The convective derivative of the

velocity is taken moving its location along with the fluid flow. Thus, it is the

acceleration felt by an observer who is flowing with the fluid.

Now we have four differential equations (the three Euler equation and

one mass conservation equation) and five unknowns (pg, P, v). Another

equation we need is the equation which specifies a relation between the

thermodynamic properties, such as po, P, and s.

For an ideal fluid, we

have P as a function of pg, which is the result of the conserved entropy

of each fluid element. In practice, the equation of state is often well ap-

proximated by incompressibility, pp=constant, or by a polytropic relation,
P=K(s)p,",

(1) five unknowns: (po, P, v)

(2) four differential equations

mass conservation %22 4+ V- (pov) =0 — one DE

ot

Euler equation & — ~YL 1§ —three DE

(3) one more relation: equation of state

for an ideal fluid P(po)
incompressible approximation  pg = constant

polytropes P=K(s)pgt/"
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1.4.3 Bernoulli’s theorem

Introducing the vorticity which is twice the angular velocity of rotation of a

fluid element,

(1) Curl is two times of angular velocity:

w=Vxv= 2(;—?
. ovy  Oug
(ex) for 2 rotation, (V x v) = —— | 2=2wp
ox oy

(2)v><w5v><(V><v)=%Vv2—(v-V)v
( V(A-B)=Ax (VxB)+(A - V)B+ (4o B)
(v-V)v:vxw—%W2 (1.47)
we rewrite the Euler eguation in terms of the angular velocity:

(1) Euler equation:

ov VP
—+WV-Vv=—-—+g
o TWVV) o T
% 1 VP
LN S £
ot 2 £o
% 1 VP
U—V—V P4+ )+ — —vxw=0 (1.48)
ot 2 00

This is the most general version of Bernoulli’'s theorem—uvalid for any ideal
fluid. For steady flow ({(¢/dt)(any quantity) = 0) of an ideal fluid which sat-
isfies ds/dt :@%ﬂ— (v-V)s =0, the thermodynamic identity holds:
dh = Tds + py 'dP
(dX - (v- V)X
L (V- V)h=TN-VJs+p, ' (v- V)P ---(1) (1.49)
- defRvmdeor - Tyemd

Then from the equation of Bernoulli's theorem, we get

% 1 vP
U—V—V 4P )+ — —vxw=0
Ot 2 £o
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0 1 P
V'|:;—Z—V(—U2+(D)+V——V><w:0:|

2 Po
vL(vxw)
> 1 wvyp ~ T2
bv-%—v'v Loge)y VP =0
t 2 Po
~~ Y
for steady flow =(v-V)h using (1) above
1
L (v-V) (2v2+®+h) =(v-V)B=0
=B
dB ;g/ d 0
-V)B=— — =0 — == -V
L (v- V) gt Al (here we used 3t 6t+v )
——
for steady flow
dB 1
WZO N BE§1JQ+(I>+fL=COHSt. (1.50)

This equation states that when an ideal fluid flows steadily, the function B is
conserved moving with a fluid element. This is the most elementary form of
the Bernoulli theorem. Since the enthalpy & is written as h = u+ Ppy* (H =
U + PV), the enthalpy can be understood as the injection energy in the
absence of kinetic and potential energy. When the fluid flows faster, by the
conservation of the Bernoulli function, we expect a higher potential or a

higher pressure without changing other variables.

1.4.4 Energy conservation

The energy conservation law may be expected with the energy flux defined
as F = Uv. However, in an external gravitational field, we should consider

another contribution by the pressure.

1 . - .
Us = p0(§v2 +u + @) for ideal fluid in the presence of gravity
ou
= 4+V-F=0
e

( F=(Uv) - (Uv+ Pv)
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i{po (lv2+u+<b>}+v-{pov(lv2+h+¢>)} =0 (1.51)
ot 2 2

By combining the energy, momentum, mass conservation laws and the first

law of thermodynamics, we obtain

% =0 for an ideal fluid (1.52)

Now we summarize the ingredients of conservation equations for ideal flu-

ids:

conserved .
. Density Flux
quantity
Mass . 00 +V. poV =0
Momentum @ £ poV +V. T=pov®V+ Pg =0
Energy L2 U= +u+®)py +V- F=(302+h+®)pv =0

1.4.5 Viscosity and Navier-Stokes equation

In the section introducing a fluid, we showed its stress tensor as
T = [pov®V + Pg] — (09 — 2no (1.53)

Fluids resist not the displacements of elements but the rate of them.

. 1
so||d:TeV-£:§@g+E+R

. 1
fIU|d:T<—V-v:§Og +o +r

where § =V -v
1 1
0ij = 5(Vjvi + Vivy) — 20gi
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Then the Euler equation is written in terms of ¢ and #:

o(pov -
(?; ) + V- (pov®V+ Pg) = pog

A

(1) from momentum conservation:

~~ i

Tideal fluid

U

. . .. 0 P
(2) Euler equation for an ideal fluid: A (v-V)v= dv __Vvr
ot dt £0

-

(4) Navier-Stokes equation: po% =—-VP+pg+ V(¢ +2V - (no)
P
dv_ VP +7+vViv
dt Po
where v = L . kinematic viscosity (1.55)

Po
The equation form in the last line is commonly quoted as the form of the
Navier-Stokes equation.

In the above derivation, we used the incompressible approximation, 6 ~
0. Usually, the expansion is considered constant for a liquid which has a very
large bulk modulus K. However, it is also valid even for a gas. The validity
can be seen as follows.
. ov VP
(1) Euler equation: o +(v-Viv=——-+

PO~
Ve

(2) dimensions: {E}+ {1’2} _ [ﬁ}*[?}

—
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]+ [*] = [67]3} + [69]
P
p C2 (2

(3) incompressible approximation:
1. for highly subsonic fluid speeds, v « C

2. and for modest gravitational effects, [0®| « C?

@«1
P
|
_dp/dt _dV/dt o
T av =|V-v=0~0 (1.56)

As an example of a gas, the air at atmospheric temperature has the sound
speed C ~ 300m/s, which is very fast compared to its flow speed. As in this

case, we consider most gas flows are incompressible as well as liquid.

In most fluids the magnitude of the shear stress is linear in velocity gra-
dient. Fluids following this law are called Newtonian named after Isaac
Newton, who first used the differential equation to assumed a linear re-
lationship between shear strain rate and shear stress for fluids. Although
non-Newtonian fluids are relatively common, many common fluids, such as
water and air, can be assumed to be Newtonian for practical calculations

under ordinary conditions.

ideal
fluid { Newtonian (ex) water, air, alcohol, ...
Non-Newtonian (ex) blood, tomato ketchup, shampoo, ...

(1.57)
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1.5 Relativistic fluid dynamics

When a fluid flows with a large speed v = |v| = ¢, Newtonian fluid mechan-

ics breaks down.

1.5.1 Rest-mass conservation

In the four-dimensional spacetime, we define a four velocity, which serves

as the velocity vector in the four dimensional spacetime.

v

~
. dz# dz® dx dt dt dx
four-vel Tt = T = (2 S0 = (=2, =2 2D ) = (L, )¢
our-velocity: u dr ( dr dT) ( dr > dr dt ) =LV
—~—
=~=1/+/1—v2 (Lorentz factor)
four-current: J* = pou = poy(1,v)* = (J°,)) (1.58)
Then the mass conservation law is generalized as
0po _ dpo B .
ot V - (pov) =0, ot + poV - v =0 Lagrangian approach

( po— po, then po — poy = J°, poV — pov =

0.J0 I .
= +V-1=27,J" =0 in flat spacetime
(in curved spacetime, V,J* =V, (pou*) = 0) (1.59)

This equation is written in the Lagrangian form as

rest mass conservation:
V. (pou) = 0

L u“(V“po) + povuu“ =0

' dp
( w'Vyupo = d—T0
I L (1.60)
dr " ’

where d/dr is the derivative with respect to proper time moving with the

fluid. Since the rest mass conservation indicates the total rest mass conser-
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vation, we have the following relation.

doV) _, O 1dv
dr dr = Vs
d
ﬁ %Z_povuu”
1dv
H_ T
Vo = L (1.61)

Taking the Newtonian limit of the rest-mass conservation equation, we get

Newtonian limit of the rest-mass conservation

- _ v m non-relativistic limit “ro V V= 0 ,I 62
dr Po ¥t Tt, y—1, utr—(1,07) dt + P ( )

dpo

The four-dimensional conservation law indicates that when a charge or a
particle passes through a past spacelike surface, the same charge or particle

exits the 4-dimensional region V4 through a future spacelike boundary.

J VIS = | TS,
1% 2%
:f JHdY,, ff JHAS, +J Fd5,,
6Vfuture avpast 9 nfinity
=0
. J J“dzu,:f JHds, (1.63)
Viuture Vpast

1.5.2 Energy conservation

In the Newtonian fluid mechanics we have the following conservation equa-

tion for energy:

% [Po (%’02 +u+¢)} +V- [pov (%w2+h+d>ﬂ =0 (1.64)

The relativistic version can be derived from the thermodynamics first law:

dE =TdS — PdV

d(eV) _ d(pVs) dV
dr =1 dr Pdr

L
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—T%HT@W) % _pdV

N dr dr
S~ 7 ~—~
rest-mass conservation for adiabaticity of fluids
dv
—_p-
dr
dp 1dv
2 Py — _ PV, u* 1.65
Llgr = P+ Py g =~ + P)Vuu (1.65)

In the Newtonian limit, we obtain the rest-mass conservation equation.

d non-relativistic limi d

(Tp :7(P+P)Vuu“$i>£:7po(vov) e
\:’ SN NS .

~ %P0 PO =Vut+Viut >V

~dt

1.5.3 Conservation laws in terms of the stress-energy tensor

In the four-dimensional spacetime, the stress tensor of the ideal (perfect)
fluid defined in the Newtonian fluid mechanics is extended in terms of four-

dimensional quantities.

T=pov®Vv+ Pg (ideal fluid in Newtonian fluid mechanics)

ool l
T = pu®u + PP (ideal fluid in 4D spacetime)

where T=T%0,0; : stress tensor,
T =T""0,0, : stress-energy (energy-momentum) tensor
po : rest-mass density
u =u"0, : four-velocity
P = P"9,0, : tensor projecting on a spacelike hypersurface

with u ® u, P we have ¢g"" = —uv*u” + P* ---(P) (1.67)

Since the comoving observer with the fluid will observe an isotropic distribu-
tion of particles, the only quantity coming into the stress-energy tensor is an

invariant scalar under the spacial rotation. This is why the four-dimensional
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stress-energy tensor is defined in terms of the energy along the time-like
direction and the pressure on the spacelike hypersurface. By using the pro-
jection tensor relation (P) and introducing thermodynamics properties, the

perfect fluid stress-energy tensor in the rest frame of the observer is written

by

™ = putu” + P P*¥
——

:g;“-/+up/uu

L ‘ ™ = (p+ P)utu” + Pg*

= [po(1 4+ u) + Plu*u” + Pg""

P
=po(l+u+ —)uru” + Pgh
Po

< ~— "~

=14u+Pv=h

(1.68)

‘T;u/ _ pohu“’u” —O—Pg’“’

where pg, p and P are the rest mass, the total energy density and the pres-
sure, respectively. The specific volume v, internal energy « and the specific

enthalpy h are introduced in the third and fourth line.
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u, (V,1T") =0

VLT

PV Ty =0 ‘

\

boundaries —

hypersurfaces

Figure 1.12: Projections of the relativistic conservation law: Along the time-
like four velocity, we get the energy conservation law. On the spacelike
hypersurface, the projected conservation law leads to the relativistic Euler

equation.

The conservation laws of energy and momentum are described by the

timelike and spacelike components of the continuity equation V, T+ = 0:

(1) energy conservation:

‘uV(VNT‘”“) =0 \

( T" = (p+ P)u*u” + Pg"”
u AV, [(p + P)uru” + Pg"" |} = w{V,.(p + P)uru” + (p + P)(V ut)u”
+(p+ P)yur(Vuu”) + (VuP)g"" + PNpg* 1}
( u,u” = —1for massive particles
= —Vulp +R)u" — (p+ P)(V,u")
+ o+ Pt wu P TP

=0 " V,(u,u")=0
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= — (Vup)u —(p+ P)(Vu) = 0

S -~

dp _

dr

—(p+ P)V,u”

(2) momentum conservation:

[P, =0], (P =g )

( T" = (p+ P)utu” + Pg", P,u” =0
Pau{vu[(ﬂ + P)utu” 4+ Pgh’}

= PouAVyul(p + Pu"u” + (p + P)ut(V,u”) + (V,P)g" + PV 9"}
=0 by zero projection of u*
= Vu[(ﬂ + P)u"] B +(p + P)u” Pal/(vuuy) +(VMP)POWQW + P(WPM}

=(gav+uau,)(Vuu")=Viug . u,Vyu’=0

= (p + P) u“vuua +(vllP)Pf¥H = 0

. ~ -~

=0 by metric compatibility

_dug

=

(p+ P)%L: _ _peny,p (1.69)

1.5.4 Relativistic Euler equation

From the relativistic momentum conservation law of fluids, we obtain the
relativistic Euler equation:

relativistic Euler equation:

d @
(04 P)g= = ~P*"V,.P

dua o o,
(p+ P)gr = (g™ +u®u")V,.P

=-V*P —u*u'V,P
\_\(_J
_dp

dr
dp
— VP — &
Y dr
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L (;;+P)% :—V“P—u“(;—f (1.70)

In the low velocity limit («* « 1), thatis, p » P and p ~ pg, we again get

the Euler equation in the Newtonian fluid mechanics:

du® dapP

P)—— = VP —u®—
(p+F) dr “dr
( +=1,2,3 component

= P ~ -
( + P) d_u — —VP _ u d_ non-relativistic limit 0% _ _VP (1 71)
p Y U
N dT —~ a7 dt
—po \: «1

Now we have all equations for all unknowns in the relativistic fluid dynamics.

(1) eight unknowns: (pg, p, P, s, u)

(2) eight differential equations

Q.

(1) rest-mass conservation e = —poV,ut — one DE
(2) energy conservation g—f =—(p+ P)V,u* — oneDE
(3) first law of TD with (1),(2) 9 =0 — one DE

(4) relativistic Euler equation  (p+ P)4= = —veP —u~92 — four DE

(5) equation of state P = P(py,s)

(1.72)
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In summary, here we show all the conservation laws we have been dealt

with in the fluid dynamics:

conserved Newtonian relativistic
guantities fluid dynamics fluid dynamics
0 d(poV) _
B2 L v (pov) =0 G =0
mass dn R
L-E“t‘pUV'V:O dr POV = —Poy gr
U u, (V,TH) = 0
U(% +V - F=0 3
’ L |5—=—(p+P)V, u"
energy U= (5112 +u+ ®)pg dr ( Vi
1 . )
F= (27)2 + h+ @) poV e f aiéabat)]c
V) _ Vs dv
( 57' =T pc[i)-r _Pd_-r)
PW(V,,,T’“’) =0
momentum @ +V  (pov®V+ Pg) = pog du®
~ ~~ d L (p+ P)d— = _PQHVIJ,P
Tideal fluid T
Euler SG+-Viv=-YE 17 l
. du® dP
dv _ _vP | > P — _VYOP — &
equation d YL (p+ P) ar v w3
ov 1,
— -V (z=*+0o
ot (2” - )
Bernoulli Ty Ve =0
" Lo (hugt?) = £ (2 ugt?) =0
theorem for steady flows, PO
dB _
&= 0
< B=1v?+®+h=const.
dv
— = —VP+pj
Po dt + pg
+ V(¢0) +2V - (no)
Navier-Stokes ) .
. | incompressible
equation )
| slowly varying n
vP
dv__ VP, g+vViv
dt £o




