

OBSERVED CHEMISTRY IN THE GG TAU A GAS AND DUST DISK: The first detection of H_2S in a protoplanetary disk

Nguyen Thi Phuong

E. Chapillon, L. Majumdar, **A. Dutrey**, S. Guilloteau, V. Piétu, V. Wakelam, **P. N. Diep**, Y.-W. Tang, T. Beck, and J. Bary

First TagKASI International Conference: Cosmic Dust and Magnetism, Oct 30-Nov 2, 2018

CONTENTS

Introduction

Observations and results

Discussion

Summary

Introduction

Observations and results (S-bearing species)

In recent attempt to study molecular chemistry with focus on Sulfur-bearing species, we observed CS, H_2S , SO, SO₂ and CCS in the GG Tau A disk.

CS (3-2) and CS (7-6) are observed in the disk, with CS (3-2) is more extended and CS(7-6) mostly present in the dense ring region.

Most of the H₂S 1(1,0) -1(0,1) emission originates from the dense ring between 180 and 260 au (T ~25 K) and extends up to ~500 au.

Other Sulfur-bearing species SO, SO₂, which are expected to be in the warmer region of the disk and C_2S are not detected.

Observations and results (C-bearing species)

Some Carbon-bearing molecules were also observed. HCO⁺(1–0) is as extended as the CO emission out ~800 au $H^{13}CO^{+}(2-1)$ isotopologe emission peaks in the eastern part of the ring. DCO⁺ (3–2) emission peaks outside of the dense ring.

Phuong et al., 2018

The measured HCO⁺/H¹³CO⁺ ratio is \sim 30, suggesting partially optically thick emission for HCO⁺(1–0) line.

Observations and results (C-bearing species)

Precursors of DCO⁺ and HCO⁺ are H₂D⁺, H₃⁺ and CO H₂D⁺ + CO \rightarrow DCO⁺ + H₂ H₃⁺ + CO \rightarrow HCO⁺ +H₂

 $\rm H_2D^+$ formed in the gas phase at low temperature, easily destroyed by CO, $\rm N_2$

 $H_{3}^{+} + HD \Rightarrow H_{2}D^{+} + H_{2} + 232K$

→ H_2D^+ should be abundant in cold disk mid-plane and studing DCO⁺ may give evidence for the CO snow line in disk mid-plane.

The measured DCO⁺/HCO⁺ ratio in disks:

0.03 over the GG Tau A disk – This work
0.04 in the disk of TW Hydra (0.06 M_☉) – van Dishoeck et al. 2003
0.024 in the disk of LkCa 15 (0.028 M_☉) – Huang et al. 2017
→ This is consistent with other disks and gives clear evidence of ongoing deuterium enrichment in the GG Tau A disk.

Observations and results

We use three-phase (i.e., gas phase, grain surface, and grain mantle, along with possible exchanges between the different phases) chemical model **Nautilus** to model the chemistry in the dense and cold ring of GG Tau A in order to explain the observations.

- **C/O ratio** affects the abundances of SO, SO₂: Their column densities drop by factors of 100 and 500, respectively, when C/O changes from 0.46 to 1.2 (Semenov et al. 2018) - **UV field** has a negligible impact on the H₂S desorption and mild affects to the SO/H₂S ratio and small affects to the DCO⁺/HCO⁺ ratio.

-2 grain size model produces much higher H₂S than observed.

Final compromised parameters

One grain size model of 0.1 μ m Stellar UV flux of f_{UV200AU} = 375 χ_0 The standard C/O ratio of 0.7 Sulfur abundance of 8 10⁻⁸

For CS:

$$CD_{(Observed)}/CD_{(Predicted)} \sim 2$$

For DCO⁺ and HCO⁺: CD_(Observed)/CD_(Predicted) ~ 5 -7

But over-predicted for H₂S (grain surface formation species) :

$$CD_{(Observed)}/CD_{(Predicted)} \sim 26$$

Discussion

Comparison with other sources

	TMC-1 ^a	LkCa 15	GG Tau
HCO ⁺	$600 \pm 180^{(1)}$	$150 \pm 35^{(3)}$	130 ± 12
H_2S	<45(1)	<7(4)	11 ± 3
$H^{13}CO^+$	$15 \pm 4^{(2)}$	$5 \pm 1.5^{(4)}$	4.7 ± 0.3
DCO+	$30 \pm 9^{(2)}$	$4.5 \pm 1.4^{(4)}$	3.5 ± 0.15

Molecular abundance relative to ¹³CO ($X_{\text{[mol]}}/X_{\text{[}^{13}\text{COl}} \times 10^5$).

Notes. ^{(a)13}CO abundance is derived from CO abundance in Ohishi et al. (1992), ⁽¹⁾Omont (2007), ⁽²⁾Butner et al. (1995), ⁽³⁾Punzi et al. (2015), ⁽⁴⁾Dutrey et al. (2011), ⁽⁵⁾Huang et al. (2017).

The disks appear to have very similar relative abundances, suggesting similar chemical processes at play, while the dense core differs significantly.

The H₂S column density is about **3 times greater** than the upper limits for DMTau, MWC480, GOTau, and LkCa 15 (Dutrey+2011), probably reflecting the larger disk mass of GG Tau A.

The CS to H_2S abundance ratio of 20 in GG Tau A may still be similar in all sources.

Summary

- We report the first detection of H₂S in a protoplanetary disk and the detections of HCO⁺, H¹³CO⁺, DCO⁺.
- Our three-phase chemical model fails to reproduce the observed column densities of S-bearing molecules, except for CS, suggesting that our understanding of Sulfur chemistry is still incomplete.
- Comparisons with other disks indicate that the detection of H₂S appears to be facilitated by the large disk mass, but that the relative abundance ratios remain similar. This indicates that GG Tau A could be a good test bed for chemistry in disks.

Thank you for your attention!