Dust Polarization Modelling at large scale Over Northern Galactic Cap using Planck and EBHIS data

Debabrata Adak IUCAA, India

Cosmic Dust and Magnetism, KASI

November 2, 2018

Collaborators:

Tuhin Ghosh, Francois Boulanger, Urmas Haud, Peter MW Kalberla, Flavien Vansyngel

PhD Supervisor : Tarun Souradeep

CMB power spectra

Major challenges are polarized foregrounds

CMB-B-mode is subdominant at each scale and frequency

Dust B-mode level at 150 GHz from Planck

 $r_d = 0.2$ means dust-BB has same power as CMB-BB at I=80 for r=0.2

There is no sky region where dust can be neglected

Planck intermediate result.xxx,2014

Questions?

Given the present technology what level of B-mode we can detect ?

- Can the existing cleaning mechanism help us?
- How to quantify the confidence level of cleaning?

Need precise dust polarization model

Fake B-mode signal due to incorrect Dust model

Simulate many realizations of Stokes Q and U maps integrating over layers along LOS and add end-to-end noise realizations.

Fitting model parameters by matching one points functions and EE, BB, TE power spectra from data.

Model Framework

$$\begin{split} \boldsymbol{B}(\hat{\boldsymbol{n}}) &= \boldsymbol{B}_{\mathrm{ord}}(\hat{\boldsymbol{n}}) + \boldsymbol{B}_{\mathrm{turb}}(\hat{\boldsymbol{n}}) \\ &= |\boldsymbol{B}_{\mathrm{ord}}|(\hat{\boldsymbol{B}}_{\mathrm{ord}}(\hat{\boldsymbol{n}}) + f_{\mathrm{M}}\hat{\boldsymbol{B}}_{\mathrm{turb}}(\hat{\boldsymbol{n}})) \end{split}$$

• Spectra of turbulent magnetic field $C_{\ell} \propto \ell^{\alpha_{M}} \text{ for } \ell \geq 2$

 $B = B_0 + B_t$ Ordered Turbulent

Ordered magnetic field

 TE correlation and E/B power asymmetry are produced by aligning CNM and LNM structures in magnetic field.

$$(Q_{
m T} \pm i U_{
m T})(\hat{m{n}}) = \sum_{\ell=2}^\infty \sum_{m=-\ell}^\ell a_{\ell m \ \pm 2} Y_{\ell m}(\hat{m{n}}) \; ,$$

T.Ghosh et. al. A&A,2017

- Model does not support high turbulence in WNM.
- Less turbulence in WNM to produce less depolarization.

Dust Power spectra

Power-law power spectra:

$\mathcal{D}_{\ell}^{X\bar{X}} = A_{X\bar{X}}(\ell/80)^{\alpha_{XX}+2}$

Parameter	$Planck~353{\rm GHz}$ data	Dust model
$lpha_{EE}$ $lpha_{BB}$ $lpha_{TE}$	-2.30 ± 0.14 -2.40 ± 0.20 -2.63 ± 0.35	-2.36 ± 0.12 -2.35 ± 0.16 -2.57 ± 0.11
$\chi^{2}_{EE}(N_{\rm d.o.f.} = 4) \\ \chi^{2}_{BB}(N_{\rm d.o.f.} = 4) \\ \chi^{2}_{TE}(N_{\rm d.o.f.} = 4)$	2.27 3.96 1.26	$\begin{array}{c} 0.35 \\ 0.25 \\ 0.59 \end{array}$
$\begin{array}{l} A_{EE} \ \left[\mu \mathbf{K}_{\mathrm{CMB}}^2 \right] \\ A_{BB} \ \left[\mu \mathbf{K}_{\mathrm{CMB}}^2 \right] \\ A_{TE} \ \left[\mu \mathbf{K}_{\mathrm{CMB}}^2 \right] \end{array}$	42.0 ± 2.34 24.5 ± 1.63 81.2 ± 11.06	42.4 ± 1.8 25.6 ± 1.5 73.6 ± 3.3
$ \begin{array}{c} \langle A_{BB} / A_{EE} \rangle \\ \langle A_{TE} / A_{EE} \rangle \end{array} $	0.58 ± 0.05 1.80 ± 0.26	0.60 ± 0.04 1.71 ± 0.10

Polarization fraction and angle distribution

Polarization fraction

Polarization angle

Dust Intensity

Orthographic view

Correlation between data and model dust intensity

Polarization angule dispersion

Polarization angle dispersion function

80 arcmin smoothed model map of dispersion function with lag = 40 arcmin

$$\mathcal{S}(m{r},\delta) = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left[\psi(m{r}+m{\delta}_i)-\psi(m{r})
ight]^2}$$

Anti-correlation between polarization fraction and dispersion function

 $p_{MAS} = p - b^2 \frac{1 - e^{-p^2/b^2}}{2p}$

- CMB B-mode is subdominant in comparison with dust over whole sky at all scale.
- Accuracy of component separation should be high in detection of primordial B-mode signal: A big challenge.
- Statistical dust modelling is necessary step to claim detection confidently.
- Our model is useful towards this goal building a physical understanding of dust polarization.
- We are able to reproduce observed dust properties using our model over a reasonable sky fraction.